Background of the problem	Replacing the Conway knot	Construction of K'	K' is not slice	References

Conway Knot is not Slice

Yikai Teng

Rheinische Friedrich-Wilhelms-Universitä Bonn

May, 2022

Background	of	the	problem
00000			

Replacing the Conway knot

Construction of K'

K' is not slice 000000 References 000

Goals for today

Major Goals

- Introduce the background and history of the Conway knot and the related Conway sliceness conjecture.
- Establish the relation between knot theory and 4-manifolds.
 - Kirby calculus.
- Introduce some more recent knot invariants:
 - Jones Polynomial
 - Khovanov's work
 - Lee's work
 - Rasmussen's work
- Sketch the proof of Conway knot not being slice.
 - We need to believe a lot of facts here!

Background of the problem $0 \bullet 0000$

Replacing the Conway knot

Construction of K

K' is not slice 000000 References 000

The Conway knot

The Conway knot

- Picture is on the right!
- Corssing number: 11.
- Has the same Alexander polynomial and Conway Polynomial as the unknot.

The Conway Sliceness Conjecture

Is the Conway knot slice?

Answer

Topologically yes, smoothly no.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background of the problem 00●000	Replacing the Conway knot	Construction of K'	K' is not slice 000000	References 000
Slico knote				

Recall unknot

A knot in S^3 is said to be trivial (or unknot) if it bounds an embedded disk in S^3 .

"Sliceness" is the 4-dimensional analogy for the unknot.

Sliceness of a knot

A knot in S^3 is said to be slice (topologically) if it bounds a smoothly embedded (resp. locally flat) disk in B^4 .

Why do we care about sliceness?

- The fact that not all knots are slice means that we cannot remove all self-intersections of immersed disks in a 4-manifold.
- This leads to the fact that the smooth h-cobordism theorem is false in dimension 4, hence all the wildness and fun in the world of 4-manifolds.

Replacing the Conway knot

Construction of K'

K' is not slice 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 000

Why is the problem so hard?

Why so hard?

- The Conway knot is a positive mutant of a slice knot: the Kinoshita-Teresaka knot.
- A lot of obstructions of a knot being slice is preserved by positive mutation.
- Moreover, the alexander polynomial of the Conway knot is the same as the unknot.
- Hence the Conway knot has no known non-vanishing obstructions.

Background of the problem $0000 \bullet 0$

Replacing the Conway knot

Construction of K' 00000 K' is not slice 000000 References 000

More on the Conway problem

History of the problem

- Fox first establish the idea of concordance and sliceness in 1962.
- Conway discovered the Conway and Kinoshita-Teresaka knot in 1970, the first was later named after him. However, at the time, the two knots could not be distinguished in isotopy.
- The two knots were first distinguished in isotopy by Riley in 1971.
- Freedman proved that both knots are topological slice in 1984.
- The Kinoshita-Teresaka knot was proved to be slice in the 90s.
- Examples of non-slice mutants of slice knots were first found in 2001 by Kirk and Livinston.
- Conway knot was finally proved to be non-slice in 2018 by Piccirillo.

Replacing the Conway knot

Construction of K

K' is not slice 000000 References 000

Skeleton of proving the Conway knot is not slice

Step 1

We prove that two knots with the same **knot trace** have to be both slice or both non-slice. In this way we can replace the Conway knot with a hopefully easier knot to deal with.

Step 2

We use **dualizable links** techniques to build a knot K' that has the same knot trace as the Conway knot.

Step 3

Fortunately the knot K' has a non-vanishing obstruction of being slice: the Rasmussen *s*-invariant.

Background of the problem	Replacing the Conway knot	Construction of K' 00000	K' is not slice 000000	Reference 000

Handlebody decomposition

Handle decomposition: "thickened" version of CW decomposition

- A handle decomposition of a smooth n-manifold M is a union $\emptyset = M_{-1} \subset M_0 \subset ... \subset M_n = M$ where M_i is obtained from M_{i-1} by attaching *i*-handles.
- Any smooth manifold has a handle decomposition.

Handlebodies: "thickened" version of cells

- A k-handle is a "thickened version of k-cells", i.e. a manifold $D^k \times D^{n-k}$.
- $\partial D^k \times D^{n-k}$ is called the attaching region, and $\partial D^k \times 0$ is called the attaching sphere.

Examples

Here is a handle decomposition of a torus.

Replacing the Conway knot

Construction of K

K' is not slice

References 000

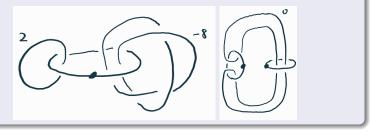
Examples of Kirby diagrams

Idea of Kirby diagrams

Next we will introduce **Kirby diagrams**: an effective way to represent smooth 4-manifolds using knot diagrams (and a little bit more data).

Examples

Here are some examples of Kirby diagrams, just to have a feeling.



Replacing the Conway knot

Construction of K

K' is not slice

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

References 000

Basic Kirby diagrams

0-handles

- The 0-handle is a 4-ball D^4 , with boundary $S^3 \cong \mathbb{R}^3 \cup *$.
- Each connected smooth manifold yields a handle decomposition with a unique 0-handle.
- We draw attaching regions of other handles in the plane, representing \mathbb{R}^3 . (Just like how we draw knots)

Replacing the Conway knot

Construction of K 00000 K' is not slice

References 000

More Kirby diagrams

2-handles

- The two handle is a thickened disc D^2 , and $\partial D^2 = S^1$.
- Thus we can think of a 2-handle as a framed knot. The knot describes an embedding of S^1 in S^3 , and the framing determines which way to thicken the disk bounded by the knot.

Knot trace

The **knot trace** of a knot K is a 4-manifold X(K) or $X_0(K)$ obtained by attaching a 0-framed 2-handle along the knot K to the 4-ball viewed as a 0-handle.

Background	the	problem

Replacing the Conway knot

Construction of K 00000 K' is not slice 000000 References 000

More Kirby diagrams

1-handles

- The 1-handle is a thickened interval D^1 , and $\partial D^1 = S^0$.
- We draw 1-handles by two balls (magically connected in some higher dimension).
- Note that 2-handles can be attached on 1-handles.

1-handles: dotted circle notation

- Alternatively, we can think of 1-handles as carving out a 0-framed two handle.
- This can be obtained by identifying the two balls and draw a dotted circle (as a carved out 2-handle).

Replacing the Conway knot

Construction of K 00000 K' is not slice 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 000

More Kirby Diagrams

3 and 4 handles: not in the picture

- We don't typically draw 3 and 4-handles.
- Thus a Kirby diagram is well-defined up to the attaching of 3 and 4-handles.
- Given a fixed Kirby diagram, all closed manifolds obtained by attaching only 3 and 4-handles are diffeomorphic to each other.

Kirby colculus	handle cancell	ntion		
000000	0000000000	00000	000000	000
Background of the problem	Replacing the Conway knot	Construction of K'	K' is not slice	References

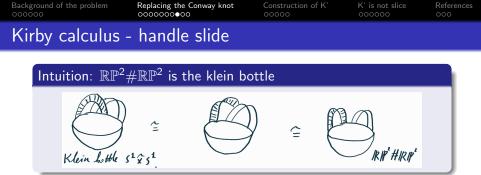
Cancellation theorem

ulus

A (k - 1)-handle and a k-handle can be cancelled if the attaching sphere of the latter intersects the belt sphere of the first transversally in a unique point (regardless of framings).

Cancellation of handles in Kirby diagrams

- Cancelling 2 handles and 3 handles: directly remove a 0-framed unknot.
- Cancelling 1 handles and 2-handles: remove a 2-handle along with its meridian.
- What if there are other 2-handles on the 1-handle? (We need to be careful).



Sliding 2-handles

- For two handles of the same index, we can isotope the attaching sphere of the first handle on top of one the other without changing the diffeomorphism type.
- For sliding 2-handles in Kirby diagrams,
 - The new attaching sphere becomes the bandsum of the knots.
 - The framing is modified by $n_i, n_j \mapsto n_i + n_j \pm 2 \cdot lk(K_i, K_j)$.
- We can slide 2-handle over 1-handles since we treat 1-handles as hollowed out 2-handles.

Replacing the Conway knot

Construction of K' 00000 K' is not slice

References 000

Abandoning the Conway knot

Theorem

A knot K is slice if and only if its knot trace X(K) embeds smoothly in S^4 .

Corollary

If two knots K and K' have diffeomorphic knot traces, then K is slice if and only if K' is slice.

With this corollary, it is safe for us to replace the Conway knot with an easier knot to deal with!

Proof of \Rightarrow

- S^3 decomposes S^4 into two 4-balls B_1 and B_2 .
- If *K* sits in *S*³, it bounds a smoothly embedded disk *D_K* in *B*₁ by definition of sliceness.
- $X(K) \cong B_2 \cup \overline{\nu(D_k)}$, which is smoothly embedded in S^4 .

Background of the problem	Replacing the Conway knot	Construction of K'	K' is not slice	References
	000000000●	00000	000000	000
Proof cont				

$\mathsf{Proof} \; \mathsf{of} \Leftarrow$

- Consider a piecewise linear embedding F : S² → X(K) such that its image consists of:
 - The cone over the knot K.
 - The core of the 2-handle.
- Consider the piecewise embedding $i \circ F : S^2 \to S^4$, where *i* is the given embedding into S^4 . Note that $i \circ F$ is smooth away from the cone point i(p).
- If we cut out a sufficiently small neighbourhood of the cone point, we have a smooth embedding:
 S²\ν(F⁻¹(p)) → S⁴\ν(i(p)). Notice that:
 - $S^2 \setminus \nu(F^{-1}(p)) \cong D^2$ and $S^4 \setminus \nu(i(p)) \cong B^4$.
 - The image of the boundary of S²\ν(F⁻¹(p)) under F is the knot K we started with.

Replacing the Conway knot

Construction of K'

K' is not slice 000000 References 000

Dualizable links

Dualizable links

A dualizable link L is a three component link with components B(blue), G(green), and R(red) satisfying:

- The sublink $B \cup R$ in S^3 is isotopic to $B \cup \mu_B$, where μ denotes the meridian.
- The sublink $G \cup R$ is isotopic to $G \cup \mu_G$.
- lk(B, G) = 0.

ロ ト 4 回 ト 4 ヨ ト - ヨ - シのぐう

Relation to 4-manifolds

For a dualizable link L, we can associate a 4-manifold by considering B and G as 0-framed 2-handles and R as the 1-handle (in the dotted circle notation).

Backgr 00000	ound of the problem	Replacing the Conway knot	Construction of K' o●ooo	K' is not slice 000000	References 000
-					

Dualizable links produce knots with the same trace

Theorem

For a dualizable link L and its associated 4-manifold X, we can find associated knots K and K' such that $X \cong X(K) \cong X(K')$.

proof of theorem

- Isotope L such that the knot R has no self-crossing.
- Slide the 2-handle *G* over *B* and cancel the 1-handle to get a 0-framed 2-handle represented by the knot *K*.
- Do the exact same procedure the other way around to get K'.
- Since handle slide and cancellation do not change the diffeomorphism type of the 4-manifold, we have X ≅ X(K) ≅ X(K').

Background	the	problem

Replacing the Conway knot

Construction of K'

K' is not slice

References 000

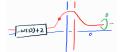
Existence of dualizable links

Existence theorem

For any knot K with unknotting number 1, there exists a dualizable link L such that its associated 4-manifold is diffeomorphic to X(K).

Proof: constructing the trace

- Define B := K, and focus on the distinguished crossing (assume WLOG positive).
- Define *R* as a parallel of *B* away from this crossing. Note that *R* is the unknot.
- Define G to the the meridian of R.
- R and G are a cancelling pair so the associated manifold is exactly X(B) = X(K).



Background of the problem	Replacing the Conway knot	Construction of K' 000●0	K' is not slice 000000	References 000
Proof cont				

Proof cont.: sliding to a dualizable link

- We slide the handles via the indicated arrows and yield the second and third pictures.
- In the second picture, B acts as a meridian of R.
- In the third picture, *R* acts as a meridian of *B*. Check that this indeed defines a dualizable link.

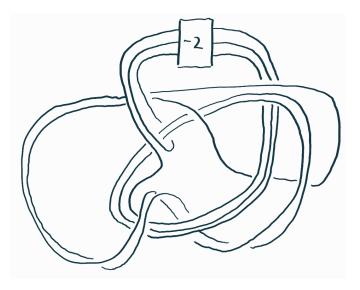
(日) (四) (日) (日) (日)

Replacing the Conway knot

Construction of K' 0000● ' is not slice

References 000

Our knot K'



◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Background of the problem	Replacing the Conway knot	Construction of K' 00000	K' is not slice ●00000	References 000
lones Polynom	nial			

Kauffman bracket

The Kauffman bracket $\langle - \rangle$ is a function from unoriented link diagrams to Laurent polynomials $\mathbb{Z}[q^{-1}, q]$ characterized by:

•
$$\langle \emptyset \rangle = 1$$
, $\langle D \sqcup \bigcirc \rangle = (q^{-1} + q) \langle D \rangle$.

• $\langle D
angle = \langle D_0
angle - q \langle D_1
angle$, where D, D_0, D_1 corresponds to:

$$\begin{array}{ccc} & \searrow & \searrow \\ D & D_{o} & P_{1.} \end{array}$$

However, the Kauffman bracket is NOT a knot invariant.

Jones polynomial (Unreduced)

• The Jones polynomial is an oriented link invariant defined by

$$J(L):=(-1)^{n_-}q^{n_+-2n_-}\langle L
angle\in\mathbb{Z}[q,q^{-1}].$$

Background of t 000000	he problem	Replacing the Conway knot	Construction of K'	K' is not slice 0●0000	Re
171					

Khovanov Homology

Overview

- The Khovanov Homology is a categorification of the Jones polynomial.
- Accordingly, The Kauffman Bracket becomes the Khovanov Bracket, which takes values in **chain complexes of graded vector spaces**.

Degree shift

The degree shift is the operator $\{I\}$ on **graded vector spaces** that shifts the dimension up by *I*.

Height shift

The height shift is the operator [s] on **chain complexes** that shifts the place by s.

Background of the problem	Replacing the Conway knot	Construction of K'	K' is not slice
			000000

Khovanov Homology cont.

Khovanov bracket

The Khovanov bracket [-] is a function from unoriented link diagrams to chain complexes of graded vector spaces (graded in $\mathbb{Z}[q, q^{-1}]$) characterized by:

- $\llbracket \emptyset \rrbracket = 0 \to \mathbb{Z} \to 0.$
- $\llbracket D \sqcup \bigcirc \rrbracket = V \otimes \llbracket D \rrbracket$, where V denotes the vector space of dimension $q + q^{-1}$.
- $\llbracket D \rrbracket = \mathcal{F}(\rightarrow \llbracket D_0 \rrbracket \rightarrow \llbracket D_1 \rrbracket \{1\} \rightarrow 0)$, where the operator \mathcal{F} "flattens" a double complex into a single complex by taking direct sums along the diagonals.

Khovanov homology

The Khovanov homology Kh(L) is the homology of the complex of graded vector spaces $[\![L]\!][-n_-]\{n_+ - 2n_-\}$.

References

Background	the	problem

Replacing the Conway knot

Construction of K

K' is not slice 000€00 References 000

Lee's progress and Rasmussen's s-invariant

Rise to spectral sequence

- Lee modified the Khovanov homology to a spectral sequence whose E_2 page is exactly Kh(L).
- The spectral sequence converges into a homology called Lee homoogy *KhL(L)*.

Theorem (Lee)

For any knot K, the total Lee homology $KhL(K) \cong \mathbb{Q} \oplus \mathbb{Q}$. Moreover, both generators are located in the grading i = 0.

Theorem/Definition (Rasmussen)

For any knot K, the generators of KhL(K) locate in the gradings $(i,j) = (0, s(K) \pm 1)$. The integer s(K) is called the Rasmussen's *s*-invariant. Moreove, if K is slice, s(K) = 0.

Calculation of Rasmussen's s-invariant

Original Calculation

- First calculate the Khovanov homology using the Skein relation.
- Use spectral sequence techniques to see which generators of Khovanov homology survive to the E_{∞} page.
- Deduce the Rasmussen's s-invariant accordingly.

Recent Developments

- To simplify the knots, we can use "Snappy" in Sage, with the method K.simplify('global').
- To calculate the s-invariant, we can use the Mathematica package "KnotTheory", with method "slnvariant".

Our knot K'

For the knot K' constructed before, s(K') = 2, thus is not slice.

Replacing the Conway knot

Construction of K'

K' is not slice 00000●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

References 000

Finishing the proof

Putting everything together

- The Conway knot K is a knot of unknotting number 1, thus there exists a dualizable link L whose associated 4-manifold is exactly the knot trace of K.
- The other associated knot K' has the same knot trace as the Conway knot. Thus K' is slice if and only the Conway knot is.
- The knot K' is not slice since its has non-vanishing Rasmussen's *s*-invariant.
- Thus we conclude that the Conway knot is not slice.

Replacing the Conway knot

Construction of K' 00000 K' is not slice 000000

References ●00

Significance of this paper

Importance of this paper

- The idea of dualizable links can be generalized into a notion called *RBG* link, and can be used to construct homeomorphic but not diffeomorphism knot traces.
- The notion of sliceness can be generalized to framed knots and to arbitrary closed 4-manifolds, and the Rasmussen's *s*-invariant turns out to be the most useful slice obstructions in S⁴, #ⁿCP², and #ⁿCP².
- With similar techniques, we can attempt to construct exotic 4-spheres (promising yet still unsuccessful).

Background of the problem	Replacing the Conway knot	Construc

Construction of K'

K' is not slice 000000 References 0●0

References

References (Original Paper)

• L. Piccirillo, The Conway knot is not slice, 2018.

Reference (Recent Developments)

- C.Manolescu, M. Marengon, S. Sarkar, M. Willis, A Generalization of Rasmussen's Invariant, with Applications to Surfaces in some Four-Manifolds, 2019.
- K. Hayden, L. Piccirillo, *The Trace Embedding and Spinelessness*, 2021
- C. Manolescu, L. Piccirillo, From Zero Surgeries to Candidates for Exotic Definite Four-Manifolds, 2021.
- K. Nakamura, *Trace Embeddings from Zero Surgery Homeomorphisms*, 2022.

	00000000	00000	000000	
Background of the problem	Replacing the Conway knot	Construction of K'	K' is not slice	References

References

References (Computer Codes)

- D. Bar-Natan, S. Morrison, *The Mathematica Package KnotTheory*, https://katlas.org/wiki/KnotTheory.
- M. Culler, N. M. Dunfield, M. Goerner, J. R. Weeks, *SnapPy, a computer program for studying the geometry and topology of 3-manifolds*, http://snappy.computop.org.

Reference (Background Knowledge)

- D. Bar-Natan, On Khovanov's Categorification of the Jones Polynoial, 2002.
- R. Gompf, A. Stipsicz, 4-Manifolds and Kirby Calculus, 1991.
- A. Scorpan, The Wild Worlds of 4-Manifolds, 2005.
- S. Behrans, B. Kalmar, M. H. Kim, M. Powell, A. Ray, *The Disc Embedding Theorem*, 2021.