

Conway Knot is not Slice

Yikai Teng

Rheinische Friedrich-Wilhelms-Universitt Bonn

May, 2022

Major Goals

• Introduce the background and history of the Conway knot and the related Conway sliceness conjecture.

KOD KAR KED KED E YOUN

- Establish the relation between knot theory and 4-manifolds.
	- Kirby calculus.
- **a** Introduce some more recent knot invariants:
	- Jones Polynomial
	- Khovanov's work
	- **a** Lee's work
	- Rasmussen's work
- Sketch the proof of Conway knot not being slice.
	- . We need to believe a lot of facts here!

[Background of the problem](#page-1-0) [Replacing the Conway knot](#page-7-0) [Construction of K'](#page-17-0) [K' is not slice](#page-22-0) [References](#page-28-0)

The Conway knot

The Conway knot

- Picture is on the right!
- Corssing number: 11.
- Has the same Alexander polynomial and Conway Polynomial as the unknot.

The Conway Sliceness Conjecture

Is the Conway knot slice?

Answer

Topologically yes, smoothly no.

KORK EXTERNE PROVIDE

Recall unknot

A knot in \mathcal{S}^3 is said to be trivial (or unknot) if it bounds an embedded disk in S^3 .

"Sliceness" is the 4-dimensional analogy for the unknot.

Sliceness of a knot

A knot in \mathcal{S}^3 is said to be slice (topologically) if it bounds a smoothly embedded (resp. locally flat) disk in \mathcal{B}^4 .

Why do we care about sliceness?

- The fact that not all knots are slice means that we cannot remove all self-intersections of immersed disks in a 4-manifold.
- This leads to the fact that the smooth h-cobordism theorem is false in dimension 4, hence all the wildness and fun in the world of 4-manifolds.

[Background of the problem](#page-1-0) [Replacing the Conway knot](#page-7-0) [Construction of K'](#page-17-0) [K' is not slice](#page-22-0) [References](#page-28-0)
 Background of the problem construction of construction of K' Construction of the References

 00000

000000

KORK EXTERNE PROVIDE

 000

Why is the problem so hard?

Why so hard?

- The Conway knot is a positive mutant of a slice knot: the Kinoshita-Teresaka knot.
- A lot of obstructions of a knot being slice is preserved by positive mutation.
- Moreover, the alexander polynomial of the Conway knot is the same as the unknot.
- **Hence the Conway knot has no known non-vanishing** obstructions.

More on the Conway problem

History of the problem

- Fox first establish the idea of concordance and sliceness in 1962.
- Conway discovered the Conway and Kinoshita-Teresaka knot in 1970, the first was later named after him. However, at the time, the two knots could not be distinguished in isotopy.
- The two knots were first distinguished in isotopy by Riley in 1971.
- **•** Freedman proved that both knots are topological slice in 1984.
- The Kinoshita-Teresaka knot was proved to be slice in the 90s.
- Examples of non-slice mutants of slice knots were first found in 2001 by Kirk and Livinston.

 299

Conway knot was finally proved to be non-slice in 2018 by Piccirillo.

Step 1

We prove that two knots with the same **knot trace** have to be both slice or both non-slice. In this way we can replace the Conway knot with a hopefully easier knot to deal with.

Step 2

We use dualizable links techniques to build a knot K^\prime that has the same knot trace as the Conway knot.

Step 3

Fortunately the knot K' has a non-vanishing obstruction of being slice: the Rasmussen s-invariant.

Handlebody decomposition

Handle decomposition: "thickened" version of CW decomposition

- \bullet A handle decomposition of a smooth n-manifold M is a union $\emptyset = M_{-1} \subset M_0 \subset ... \subset M_n = M$ where M_i is obtained from M_{i-1} by attaching *i*-handles.
- Any smooth manifold has a handle decomposition.

Handlebodies: "thickened" version of cells

- A k-handle is a "thickened version of k-cells", i.e. a manifold $D^k \times D^{n-k}$.
- $\partial D^k\times D^{n-k}$ is called the attaching region, and $\partial D^k\times 0$ is called the attaching sphere.

Examples

Here is a handle decomposition of a torus.

Idea of Kirby diagrams

Next we will introduce **Kirby diagrams**: an effective way to represent smooth 4-manifolds using knot diagrams (and a little bit more data).

Examples

Here are some examples of Kirby diagrams, just to have a feeling.

Basic Kirby diagrams

0-handles

- The 0-handle is a 4-ball D^4 , with boundary $S^3\cong \mathbb{R}^3\cup *$.
- Each connected smooth manifold yields a handle decomposition with a unique 0-handle.
- We draw attaching regions of other handles in the plane, representing \mathbb{R}^3 . (Just like how we draw knots)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익(연

[Background of the problem](#page-1-0) [Replacing the Conway knot](#page-7-0) [Construction of K'](#page-17-0) [K' is not slice](#page-22-0) [References](#page-28-0)

 00000

000000

 000

More Kirby diagrams

2-handles

- The two handle is a thickened disc D^2 , and $\partial D^2 = S^1$.
- Thus we can think of a 2-handle as a framed knot. The knot describes an embedding of S^1 in S^3 , and the framing determines which way to thicken the disk bounded by the knot.

Knot trace

The **knot trace** of a knot K is a 4-manifold $X(K)$ or $X_0(K)$ obtained by attaching a 0-framed 2-handle along the knot K to the 4-ball viewed as a 0-handle.

1-handles

- The 1-handle is a thickened interval D^1 , and $\partial D^1=S^0.$
- We draw 1-handles by two balls (magically connected in some higher dimension).
- Note that 2-handles can be attached on 1-handles.

1-handles: dotted circle notation

- Alternatively, we can think of 1-handles as carving out a 0-framed two handle.
- This can be obtained by identifying the two balls and draw a dotted circle (as a carved out 2-handle).

[Background of the problem](#page-1-0) [Replacing the Conway knot](#page-7-0) [Construction of K'](#page-17-0) [K' is not slice](#page-22-0) [References](#page-28-0)

 000000

KORK EXTERNE PROVIDE

More Kirby Diagrams

3 and 4 handles: not in the picture

- We don't typically draw 3 and 4-handles.
- Thus a Kirby diagram is well-defined up to the attaching of 3 and 4-handles.
- Given a fixed Kirby diagram, all closed manifolds obtained by attaching only 3 and 4-handles are diffeomorphic to each other.

Cancellation theorem

A $(k-1)$ -handle and a k-handle can be cancelled if the attaching sphere of the latter intersects the belt sphere of the first transversally in a unique point (regardless of framings).

Cancellation of handles in Kirby diagrams

- Cancelling 2 handles and 3 handles: directly remove a 0-framed unknot.
- Cancelling 1 handles and 2-handles: remove a 2-handle along with its meridian.
- What if there are other 2-handles on the 1-handle? (We need to be careful).

Sliding 2-handles

- **•** For two handles of the same index, we can isotope the attaching sphere of the first handle on top of one the other without changing the diffeomorphism type.
- For sliding 2-handles in Kirby diagrams,
	- The new attaching sphere becomes the bandsum of the knots.
	- The framing is modified by $n_i, n_j \mapsto n_i + n_j \pm 2 \cdot lk(K_i, K_j)$.
- We can slide 2-handle over 1-handles since we treat 1-handles as hollowed out 2-handles.

[Background of the problem](#page-1-0) [Replacing the Conway knot](#page-7-0) [Construction of K'](#page-17-0) [K' is not slice](#page-22-0) [References](#page-28-0)

 00000

00000C

 000

Abandoning the Conway knot

Theorem

A knot K is slice if and only if its knot trace $X(K)$ embeds smoothly in S^4 .

Corollary

If two knots K and K' have diffeomorphic knot traces, then K is slice if and only if K' is slice.

With this corollary, it is safe for us to replace the Conway knot with an easier knot to deal with!

Proof of ⇒

- S^3 decomposes S^4 into two 4-balls B_1 and B_2 .
- If K sits in S^3 , it bounds a smoothly embedded disk D_K in B_1 by definition of sliceness.
- $X(K) \cong B_2 \cup \overline{\nu(D_k)}$ $X(K) \cong B_2 \cup \overline{\nu(D_k)}$, which is smoothly [e](#page-14-0)[mb](#page-16-0)e[dd](#page-15-0)e[d](#page-6-0) [i](#page-7-0)n S^4 S^4 [.](#page-16-0)

Proof of \Leftarrow

Consider a piecewise linear embedding $F:S^2\to X(K)$ such that its image consists of:

- \bullet The cone over the knot K
- **The core of the 2-handle.**
- Consider the piecewise embedding $i \circ F : S^2 \to S^4$, where i is the given embedding into S^4 . Note that $i \circ F$ is smooth away from the cone point $i(p)$.
- If we cut out a sufficiently small neighbourhood of the cone point, we have a smooth embedding: $S^2 \backslash \nu(F^{-1}(p)) \hookrightarrow S^4 \backslash \nu(i(p))$. Notice that:
	- $S^2 \setminus \nu(F^{-1}(p)) \cong D^2$ and $S^4 \setminus \nu(i(p)) \cong B^4$.
	- The image of the boundary of $S^2 \setminus \nu(F^{-1}(p))$ under F is the knot K we started with.

[Replacing the Conway knot](#page-7-0) **[Construction of K'](#page-17-0)** [K' is not slice](#page-22-0) [References](#page-28-0) 00000000

 00000

00000C

റററ

Dualizable links

Dualizable links

A dualizable link L is a three component link with components $B(b \le b)$, $G(green)$, and $R(\text{red})$ satisfying:

- The sublink $B\cup R$ in \mathcal{S}^3 is isotopic to $B \cup \mu_B$, where μ denotes the meridian.
- The sublink $G \cup R$ is isotopic to $G \cup \mu_G$.
- $lk(B, G) = 0.$

OF KALLAST AST START

Relation to 4-manifolds

For a dualizable link L, we can associate a 4-manifold by considering B and G as 0-framed 2-handles and R as the 1-handle (in the dotted circle notation).

Theorem

For a dualizable link L and its associated 4-manifold X , we can find associated knots K and K' such that $X \cong X(K) \cong X(K')$.

proof of theorem

- Isotope L such that the knot R has no self-crossing.
- Slide the 2-handle G over B and cancel the 1-handle to get a 0-framed 2-handle represented by the knot K .
- Do the exact same procedure the other way around to get K' .
- Since handle slide and cancellation do not change the diffeomorphism type of the 4-manifold, we have $X \cong X(K) \cong X(K')$.

Existence of dualizable links

Existence theorem

For any knot K with unknotting number 1, there exists a dualizable link L such that its associated 4-manifold is diffeomorphic to $X(K)$.

Proof: constructing the trace

- Define $B := K$, and focus on the distinguished crossing (assume WLOG positive).
- Define R as a parallel of B away from this crossing. Note that R is the unknot.
- \bullet Define G to the the meridian of R.
- \bullet R and G are a cancelling pair so the associated manifold is exactly $X(B) = X(K)$.

OF KALLAST AST START

Proof cont.: sliding to a dualizable link

- We slide the handles via the indicated arrows and yield the second and third pictures.
- \bullet In the second picture, B acts as a meridian of R.
- \bullet In the third picture, R acts as a meridian of B. Check that this indeed defines a dualizable link.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 QQ

K ロ K K 日 K K ミ K K E K Y B K Y Q Q C

Kauffman bracket

The Kauffman bracket $\langle - \rangle$ is a function from unoriented link diagrams to Laurent polynomials $\mathbb Z[q^{-1},q]$ characterized by:

$$
\bullet \ \langle \emptyset \rangle = 1, \ \langle D \sqcup \bigcirc \rangle = (q^{-1} + q) \langle D \rangle.
$$

 $\langle D \rangle = \langle D_0 \rangle - q \langle D_1 \rangle$, where D, D_0 , D_1 corresponds to:

$$
\times \underset{D}{\times} \underset{D_0}{\times} \underset{D_1}{\times}
$$

However, the Kauffman bracket is NOT a knot invariant.

Jones polynomial (Unreduced)

The Jones polynomial is an oriented link invariant defined by

$$
J(L):=(-1)^{n_-}\hspace{1pt} q^{n_+-2n_-}\langle L\rangle\in\mathbb{Z}[q,q^{-1}].
$$

Overview

- The Khovanov Homology is a categorification of the Jones polynomial.
- Accordingly, The Kauffman Bracket becomes the Khovanov Bracket, which takes values in chain complexes of graded vector spaces.

Degree shift

The degree shift is the operator $\{l\}$ on graded vector spaces that shifts the dimension up by l.

Height shift

The height shift is the operator $[s]$ on **chain complexes** that shifts the place by s.

Khovanov Homology cont.

Khovanov bracket

The Khovanov bracket $\llbracket - \rrbracket$ is a function from unoriented link diagrams to chain complexes of graded vector spaces (graded in $\mathbb{Z}[q,q^{-1}])$ characterized by:

- \bullet $\llbracket \emptyset \rrbracket = 0 \rightarrow \mathbb{Z} \rightarrow 0.$
- \bigcirc $\llbracket D \sqcup \bigcirc \rrbracket = V \otimes \llbracket D \rrbracket$, where V denotes the vector space of dimension $q+q^{-1}$.
- \bullet $\llbracket D \rrbracket = \mathcal{F}(\to \llbracket D_0 \rrbracket \to \llbracket D_1 \rrbracket \{1\} \to 0)$, where the operator \mathcal{F} "flattens" a double complex into a single complex by taking direct sums along the diagonals.

Khovanov homology

The Khovanov homology $Kh(L)$ is the homology of the complex of graded vector spaces $\llbracket L \rrbracket[-n_{-}]\{n_{+} - 2n_{-}\}.$

Lee's progress and Rasmussen's s-invariant

Rise to spectral sequence

- Lee modified the Khovanov homology to a spectral sequence whose E_2 page is exactly $Kh(L)$.
- The spectral sequence converges into a homology called Lee homoogy $KhL(L)$.

Theorem (Lee)

For any knot K, the total Lee homology $KhL(K) \cong \mathbb{Q} \oplus \mathbb{Q}$. Moreover, both generators are located in the grading $i = 0$.

Theorem/Definition (Rasmussen)

For any knot K, the generators of $KhL(K)$ locate in the gradings $(i, j) = (0, s(K) \pm 1)$. The integer $s(K)$ is called the Rasmussen's s-invariant. Moreove, if K is slice, $s(K) = 0$.

 B eplacing the Conway knot $\begin{array}{cc} \text{Construction of K'} & \text{K' is not slice} \\ \text{OOOOOOO} & \text{OOO} \\ \text{OOOOO} & \text{OOO} \end{array}$ $\begin{array}{cc} \text{Construction of K'} & \text{K' is not slice} \\ \text{OOOOOOO} & \text{OOO} \\ \text{OOOOO} & \text{OOO} \end{array}$ $\begin{array}{cc} \text{Construction of K'} & \text{K' is not slice} \\ \text{OOOOOOO} & \text{OOO} \\ \text{OOOOO} & \text{OOO} \end{array}$ $\begin{array}{cc} \text{Construction of K'} & \text{K' is not slice} \\ \text{OOOOOOO} & \text{OOO} \\ \text{OOOOO} & \text{OOO} \end{array}$ $\begin{array}{cc} \text{Construction of K'} & \text{K' is not slice} \\ \text{OOOOOOO} & \text{OOO} \\ \text{OOOOO} & \text{OOO} \end{array}$

 00000

റററ

Calculation of Rasmussen's s-invariant

Original Calculation

- **•** First calculate the Khovanov homology using the Skein relation.
- Use spectral sequence techniques to see which generators of Khovanov homology survive to the E_{∞} page.
- Deduce the Rasmussen's s-invariant accordingly.

Recent Developments

- To simplify the knots, we can use "Snappy" in Sage, with the method K.simplify('global').
- To calculate the s-invariant, we can use the Mathematica package "KnotTheory", with method "sInvariant".

Our knot K'

For [th](#page-27-0)e knot K' constr[u](#page-25-0)ctedbef[o](#page-27-0)r[e](#page-28-0), $s(K') = 2$ $s(K') = 2$, thu[s](#page-26-0) [is](#page-27-0) [n](#page-22-0)o[t](#page-28-0) [s](#page-21-0)[li](#page-22-0)[c](#page-27-0)e[.](#page-0-0)

Finishing the proof

Putting everything together

- The Conway knot K is a knot of unknotting number 1, thus there exists a dualizable link L whose associated 4-manifold is exactly the knot trace of K .
- The other associated knot K' has the same knot trace as the Conway knot. Thus K' is slice if and only the Conway knot is.

KORKARYKERKER OQO

- The knot K' is not slice since its has non-vanishing Rasmussen's s-invariant.
- Thus we conclude that the Conway knot is not slice.

[Background of the problem](#page-1-0) [Replacing the Conway knot](#page-7-0) [Construction of K'](#page-17-0) [K' is not slice](#page-22-0) [References](#page-28-0)

 00000

000000

KORKARYKERKER OQO

 \bullet

Significance of this paper

Importance of this paper

- The idea of dualizable links can be generalized into a notion called RBG link, and can be used to construct homeomorphic but not diffeomorphism knot traces.
- The notion of sliceness can be generalized to framed knots and to arbitrary closed 4-manifolds, and the Rasmussen's s-invariant turns out to be the most useful slice obstructions in S^4 , $\#^n \mathbb{CP}^2$, and $\#^n \mathbb{CP}^2$.
- With similar techniques, we can attempt to construct exotic 4-spheres (promising yet still unsuccessful).

References

References (Original Paper)

• L. Piccirillo, The Conway knot is not slice, 2018.

Reference (Recent Developments)

- C.Manolescu, M. Marengon, S. Sarkar, M. Willis, A Generalization of Rasmussen's Invariant, with Applications to Surfaces in some Four-Manifolds, 2019.
- K. Hayden, L. Piccirillo, The Trace Embedding and Spinelessness, 2021
- C. Manolescu, L. Piccirillo, From Zero Surgeries to Candidates for Exotic Definite Four-Manifolds, 2021.
- K. Nakamura, *Trace Embeddings from Zero Surgery* Homeomorphisms, 2022.

References

References (Computer Codes)

- D. Bar-Natan, S. Morrison, The Mathematica Package KnotTheory, https://katlas.org/wiki/KnotTheory.
- M. Culler, N. M. Dunfield, M. Goerner, J. R. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, http://snappy.computop.org.

Reference (Background Knowledge)

- D. Bar-Natan, On Khovanov's Categorification of the Jones Polynoial, 2002.
- R. Gompf, A. Stipsicz, 4-Manifolds and Kirby Calculus, 1991.
- A. Scorpan, The Wild Worlds of 4-Manifolds, 2005.
- S. Behrans, B. Kalmar, M. H. Kim, M. Powell, A. Ray, The Disc Embedding Theorem, 2021.