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Abstract

This thesis provides a concise overview of knot traces, a key concept in
4-manifold topology and knot theory.

The first part of this thesis focuses on distinguishing knot traces with
diffeomorphic boundaries up to various equivalence relations. It includes
proofs that Boyer’s obstruction completely classifies knot traces with dif-
feomorphic boundaries up to homeomorphism, h-cobordism, and stable dif-
feomorphism. Additionally, examples are provided for non-homeomorphic
0-trace pairs and exotic 0-trace pairs.

The second part explores plug twists using knot traces, surveying re-
sults on the construction of exotic R4’s and the potential construction of
exotic S4’s. The existence of a knot trace capable of yielding pairwise non-
diffeomorphic 4-manifolds through iterative plug twists is also proven.

The final part investigates the relationship between knot concordances
and knot traces. Counterexamples are surveyed, suggesting that none of
the τ, ϵ, s invariants, or the slice genera are trace invariants. The thesis
concludes with a survey of a theorem proposing that the ν invariant is likely
to be a knot trace invariant.
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Chapter 1

Introduction

A knot K is called slice if, when considered as an embedding S1 ↪→ S3 =
∂B4, it bounds an embedded disk in B4 [9], [10]. This definition makes sense
in both the topological locally flat and the smooth category.

The notion of sliceness can be easily generalised to what is called con-
cordance. Two knots K and K ′ are said to be concordant if there exists
an annulus embedded in S3 × I, such that when restricting the embedding
to the two boundary components, we have exactly the two knots K and
K ′, considered as embeddings in opposite copies of S3’s. The monoid of
knots forms an abelian group under this equivalence relation, denoted by
the concordance group C.

Throughout the years, various slice obstructions and concordance in-
variants have been discovered, the first being the knot signature. At the
turn of the century, more concordance invariants have been discovered using
techniques like Heegaard Floer theory and Khovanov theory. In this the-
sis we survey some famous ones: the τ invariant, the ν invariant, and the
ϵ invariant from Heegaard Floer theory and Rasmussen’s s-invariant from
Khovanov theory.

On a different matter, given a knot K in S3, we can construct a 4-
manifold by gluing a 2-handle with framing n along this knotK to a single 0-
handle. The resulting compact 4-manifold is called the knot trace of framing
n (or n-trace for short) for K, denoted as Xn(K). This thesis is a survey
on the set of knot traces.

Since the homotopy type of a knot trace is independent of the isotopy
type of the attaching circle or the framing of the 2-handle, it follows im-
mediately that any knot trace is homotopy equivalent to the 0-trace of the
unknot, i.e. S2 × D2. Namely, every knot trace is a homotopy S2. It is
natural to consider the question of how to distinguish the homeomorphism
types or diffeomorphism types of two knot traces. The first obstruction is
the diffeomorphism types of the boundaries. The boundary of the knot trace
Xn(K) is the Dehn surgery S3

n(K), and thus for general pairs of (K,n) and
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(K ′, n′), the boundary diffeomorphism types will not be the same. Conse-
quently, to resolve this problem, we will study ways to construct knots with
diffeomorphic Dehn surgeries. In section 2.1, we survey different ways to
construct pairs of distinct knots with diffeomorphic 0-surgeries. It turns out
that every 0-surgery homeomorphism can be illustrated by what is called an
RBG link [33]. Its n-surgery analogue is called n-RBG links [44].

Fixing the diffeomorphism type of the boundaries, now the first goal is
to study pairs of knot traces with diffeomorphic boundaries. In section 2.2,
we study ways to distinguish two knot traces up to some equivalence rela-
tions. The equivalence relations we will consider includes diffeomorphisms,
homeomorphisms, h-cobordisms in both categories, stable isomorphism in
both categories, and CP2-stable diffeomorphisms in both categories. Also,
as we are talking about manifolds with boundary, we can also fix a bound-
ary diffeomorphism and ask the question of whether the fixed boundary
map extends to an above mentioned equivalence relation. It turns out that
homeomorphisms, h-cobordisms in both categories, and stable isomorphism
in both categories behave exactly the same for 0-traces, as all of the quiva-
lence relatiuns are obstructed by Boyer’s θ-obstruction [5]. This is given by
the following theorem.

Theorem 2.20 (Original result). Given a pair of knots K and K ′ such that
there is an orientation preserving homeomorphism ϕ : S3

0(K) → S3
0(K

′), the
following statements are equivalent.

1. The boundary homeomorphism ϕ extends to a homeomorphism Φ :
X0(K) → X0(K

′).

2. The boundary homeomorphism ϕ extends to a relative homotopy equiv-
alence (a homotopy equivalence that restricts to the fixed boundary dif-
feomorphism) Φ : X0(K) → X0(K

′).

3. There is a relative h-cobordism between X0(K) and X0(K
′) correspond-

ing to the map ϕ.

4. The boundary homoemorphism ϕ extends to a stable diffeomorphism
Φ : X0(K)#nS2 × S2 → X0(K

′)#nS2 × S2 for some choice of n.

5. The boundary homeomorphism ϕ extends to a stable homeomorphism
Φ : X0(K)#nS2 × S2 → X0(K

′)#nS2 × S2 for some choice of n.

6. The boundary homeomorphism ϕ is even, i.e. the 4-manifold X(K)∪ϕ

−X(K ′) has even intersection form.

It turns out that any two 0-traces with diffeomorphic boundaries are
CP2-stably diffeomorphic, and thus CP2-stably homeomorphic. Diffeomor-
phisms between knot traces on the other hand, are not yet fully understood.
In section 2.2, we will also give various counterexamples with respect to the
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above mentioned equivalence relations, e.g. knot traces that are not home-
omorphic, homeomorphic knot traces but not relative to the boundaries,
exotic knot traces, ...

Relating knot traces to sliceness of knots, it is widely known that the
knot trace is a useful tool to study slice knots and concordances, due to the
trace embedding lemma, stated as follows.

Theorem 2.28 (Folklore). For a knot K in S3, K is slice if and only if its
0-trace X0(K) embeds in S4. This result holds in both the smooth category
and the topological locally flat category.

With the trace embedding lemma, we can study 4-manifolds to study
sliceness of knots, with the most famous result being the Conway knot is
not slice [43]. Conversely, we can also study sliceness of knots to study
4-manifolds, e.g. construct exotic copies of closed 4-manifolds. In fact, we
can construct exotic copies of R4’s and in fact any non-compact 4-manifolds.
In [33], Manolescu and Piccirillo suggested that a similar construction might
be able to yield exotic 4-spheres. We survey all these results in section 2.3.
In subsection 2.3.3, we will apply the same trick to elliptic surfaces E(m)
to construct exotic copies. It turns out that the we can choose the knot
trace to make resulting closed 4-manifold match the Fintushel-Stern knot
surgered elliptic surface [13]. This proves the following theorem.

Theorem 2.34 (Original result). There exists an integer n and a knot trace
Xn(K), together with a boundary automorphism ϕ on S3

n(K) such that the
iterated automorphism ϕk does not extend to a trace self-diffeomorphism for
any k > 0.

Relating knot concordances to knot traces is a bit tricky. In chapter 3
of this survey, we ask the question of which of the above mentioned smooth
concordance invariants (τ, µ, ϵ, s, ...) are smooth knot trace invariants. By
Piccirillo’s result [42], we know that Rasmussen’s s-invariant as well as the
slice genus are not trace invariants. In section 3.1 and 3.2, we review some
basic Khovanov theory and survey her results in [43] and [42]. In section
3.3 and 3.4, we review basic Heegaard Floer theory and constructions of the
trace invariants. Finally we survey results from [21] and see that the τ and
ϵ invariants are not trace invariants while the ν invariant is most likely to
be one. This is given by the following theorem.

Theorem 3.39 (Theorem 1.4 of [21]). If the oriented knot traces Xn(K)
and Xn(K

′) are diffeomorphic, then ν(K) = ν(K ′), except possibly if n < 0
and {ν(K), ν(K ′)} = {0, 1}.

Acknowledgements The author would like to express heartfelt gratitude
to his advisor, Dr. Arunima Ray, for her exceptional generosity with her
encouragement, expertise, and time, as well as all the help during the course
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thank Qianhe Qin for her insightful conversations, and her help on correcting
several mistakes throughout this thesis. Lastly, the author is also grateful
to all those who have offered their support in various forms.
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Chapter 2

Knot Traces

A knot n-trace Xn(K) is the smooth 4-manifold with a single 2-handle glued
to a 0-handle along the knot K, with framing coefficient n. Its boundary
turns out to be the n-surgery of the 3-sphere along the knot K, S3

n(K).
In generic cases, two knot traces Xn(K) and Xn(K

′) are not homeomor-
phic since they have different boundaries. However, since there exist distinct
knots K and K ′ that have homeomorphic n-surgeries, the corresponding n-
traces are a priori not distinguishable. The goal of this chapter is to study
the behaviour of such pairs of knot traces with homeomorphic boundaries.

In most part of this survey, we restrict our attention to 0-surgeries S3
0(K)

and 0-traces X0(K).

2.1 Zero Surgery of a Knot

To begin with, there are a few known ways to construct possibly distinct
knot traces with homeomorphic 0-surgeries. We follow the historic order
and introduce dualisable patterns [6], annulus twisting [41], and RBG con-
structions [33].

2.1.1 Dualisable Patterns

The construction of dualisable patterns was first introduced by Brakes in
1980 [6]. However, in most of this section we will follow [32] for a more
modern organisation.

A pattern P : S1 ↪→ V is an oriented knot in the standard solid torus.
Then, define µP and µV to be the positively oriented meridians for P (i.e.
with linking number +1) and for V (i.e. homologous to a positive multiple
of µP ) respectively. Further more, define λV to be S1 × {∗} oriented such
that P is homologous to n · λV , in which n is positive and is called the
winding number of P . Finally define λP to be a framing curve of P that is
homologous to a positive multiple of λV in V \ν(P ).
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Under this definition, we can define a dualisable pattern.

Definition 2.1. A pattern P in a solid torus V is said to be dualisable
if there exists a dual pattern P ∗ in a solid torus V ∗ such that there is an
orientation preserving homeomorphism f : V \P → V ∗\P ∗ with f(λV ) =
λP ∗ , f(λP ) = λV ∗ , f(µV ) = −µP ∗ , f(µP ) = −µV ∗ .

Note that this definition is redundant. If we require only f(λP ) = λV ∗

and f(µV ) = −µP ∗ , we automatically have the whole definition by simply
isotoping f in a small collar near the boundary.

There is also an alternate definition.
We start with the following observation. If we start with an embedding

i : S1 × D2 ↪→ S1 × S2 given by (t, d) 7→ (t, ι(d)) where ι : D2 ↪→ S2 is
an orientation-preserving embedding, we can transform a pattern P : S1 ↪→
S1 ×D2 to a knot P̂ in S1 × S2 by composing with the embedding i.

Definition 2.2. A pattern P is dualisable if the knot P̂ is isotopic to λ̂V
in S1 × S2. Here λ̂V is the knot given by the constructions above, treating
λV as a pattern.

Lemma 2.3 (Proposition 3.5 of [32]). The two definitions above are equiv-
alent.

Proof. For one direction, if the knot P̂ is isotopic to λ̂V in S1 × S2, the
complement V ∗ := S1 × S2\ν(P̂ ) is a solid torus. Now define the dual

pattern P ∗ := λ̂V in V ∗. Then µV is identified with −µP ∗ and λP with λV ∗ .
Recall that these two identifications are enough to show that P and P ∗ are
dual to each other in the first definition.

For the other direction, since µV is identified with −µP∗, the Dehn fill-
ing of V ∗\ν(P ∗) along −µP ∗ is diffeomprphic to the Dehn filling of V \ν(P )
along µV , which is diffeomorphic to S1 ×S2\ν(P̂ ). Thus the tubular neigh-

bourhoods of both P̂ and λ̂V gives two genus one Heegaard splittings of
S1 ×S2. Thus P̂ is isotopic to ±λ̂V since the genus one Heegaard splittings
of S1×S2 is unique up to isotopy [51]. The claim on orientation immediately
follows from P̂ being homologous to a positive multiple of λV in the first
definition.

The two patterns described in Figure 2.1 give an example of a pair of
dualisable patterns. Here the −4 means a twist box with 4 negative twists.

It is proved in [6] that any pair of dualisable patterns create a pair of
knots with homeomorphic zero-surgeries.

Theorem 2.4 (Theorem 1 of [6] and Theorem 3.8 of [32]). If P is a du-
alisable pattern with dual P ∗, then there is a 0-surgery homeomorphism
ϕ : S3

0(P (U)) → S3
0(P

∗(U)).
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-4

Figure 2.1: An example of a pair of dualisable patterns

Proof. Notice that S3
0(P (U)) is the Dehn filling of V \ν(P ) along λP and λV ,

which by the first definition of dualisable patterns, is diffeomorphic to the
Dehn filling of V ∗\ν(P ∗) along λV ∗ and λP ∗ , which is exactly S3

0(P
∗(U)).

This proves the theorem.

We also remark that the above construction can be generalised to non-
zero knot surgery using Brakes’ original formulation [6]. The statement is
as follows.

Definition 2.5. Fix an unknot U ⊂ S3. A knot K ⊂ S3\U is said to be
trivilisable by a (q, n) twist if the linking number lk(K,U) = n and the
image of K under the Rolfsen twist S3 ∼= S3

1/q(U) is unknotted.

Theorem 2.6 (Theorem 1 of [6]). For i = 1 and 2, if two knots Ki can
be trivialised by a (qi, ni) twist, then we have a surgery homeomorphism the
(1−N)/q2-surgery along a satellite of K1 and the (1−N)/q1-surgery along
a satellite of K2, where N = n21n

2
2q1q2.

Note that if we take ni and qi as 1, then we have exactly the statements
about 0-surgeries above.

2.1.2 Annulus Twisting

Annulus twisting is a method invented by Osoinach [41] to construct an
infinite family of knots with diffeomorphic 0-surgeries.

We start by observing the following lemma about the annulus A in the
standardly embedded torus V with k full twists, as shown in Figure 2.2.

Lemma 2.7 (Theorem 2.1 and Corollary 2.2 of [41]). If we do an (k+1/n)-
framed surgery on one boundary component of A and (k − 1/n)-framed
surgery on the other, the resulting 3-manifold V ′ is still a solid torus. More-
over, any meridian for V is a meridian for V ′.
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......
k

A

k + 1
n

k − 1
n

Figure 2.2: A k-twisted annulus in the standardly embedded solid torus

Proof. Notice that if k ̸= 0, we can reduce the statement to the k = 0 case
by doing a −( 1k )-framed Rolfsen twist along the meridian of the solid torus.
Consequently, we only need to consider the k = 0 case.

We prove the k = 0 case by constructing a disk in D′ ⊂ V ′ as the image
of a meridian disk D ⊂ V , and extending this homeomorphism to all of V ′.

The left picture of Figure 2.3 depicts the meridian disk D ⊂ V . After
cutting out the intersection with a tubular neighbourhood of the annulus
A, we have a punctured disk, as depicted by the right picture of Figure 2.3.
We will fill out its inner boundary to form the disk D′.

We start by filling in the horizontal part of the boundary with a disk
∆ ⊂ V \D, where ∆ winds around the solid torus n times horizontally. A
local picture of ∆ near D is depicted in Figure 2.4 (the n sheets on the right
are identified with the n sheets on the left through the solid torus). The
resulting surface is a twice punctured disk, whose boundaries are exactly
the (±1/n)-framed curves on the tubular neighbourhoods of ∂A. Thus we
can cap off the twice punctured disk by the surgered meridian disks in V ′.
This process yields the disk D′ ⊂ V ′.

D

A

Figure 2.3: Left: Solid torus with the embedded annulus and meridian disk
visible. Right: Meridian disk with the tubular neighbourhood of the annulus
drilled out.

9



∆

}n

Figure 2.4: A filling of the drilled out neighbourhood.

This homeomorphism between V and V ′ is constructed exactly by map-
ping each meridian diskD×{∗} to its correspondingD′×{∗}. This construc-
tion automatically forces the identification of meridians of V and V ′.

With the above observation, we know that for an embedded annulus A
in some 3-manifold M , there are infinitely many pairs of surgery on ∂A
that does not change the homeomorphism type ofM . Denote this operation
“twisting along A n times”.

To construct an infinite family of knots with diffeomorphic 0-surgeries,
we start with a k-twisted annulus A, whose boundaries we denote as l1
and l2. We can do a band sum of parallel copies of the two boundary
components to form a knot K ⊂ S3, e.g. the knot in Figure 2.5. Now
if we twist along the annulus A n times, we can consider K as a knot in
S3
±1/n(∂A). Thus we have an infinite family of (not necessarily distinct)

knots {Kn} ⊂ S3
±1/n(∂A)

∼= S3.

...
m

k

K

Figure 2.5: A band sum of the two boundary components of the annulus
gives a knot.
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Doing a 0-surgery along the knot K corresponds to some rn-surgery on
the knot Kn. However, since by definition it is required that H1(S

3
0(K)) ∼=

H1(S
3
0,1/n,−1/n(K, l1, l2))

∼= H1(S
3
rn(Kn)) ∼= Z, we can conclude that every

rn = 0.
Thus we have an infinite family of knots with homeomorphic 0-surgeries

{Kn}.

2.1.3 RBG Constructions

Finally, we consider RBG constructions, which is a method developed by
Manolescu and Piccirillo [33] that can completely represent 0-surgery home-
omorphisms. This is given by Lemma 2.11 below.

Definition 2.8. An RBG link is a 3-component rationally framed link L =
(R, r) ∪ (B, b) ∪ (G, g) in S3 such that there are homeomorphisms ψG :
S3
r,b(R∪B) → S3 and ψB : S3

r,g(R∪G) → S3, and H1(S
3
r,b,g(R∪B∪G);Z) ∼=

Z.

For simplicity in later parts of this section, we consider a smaller family
of RBG links, called the special RBG links.

Definition 2.9. An RBG link is called special if b = g = 0, and there are
link isotopies R ∪ B ∼= R ∪ µR ∼= R ∪G, where µR denotes the meridian of
R.

Figuers 2.6 and 2.7 give two examples of RBG links. The first one is
special while the second one is not. Again the integers in the twist boxes
represent the number of full positive twists.

The RBG link in Figure 2.6 defines the Manolescu-Piccirillo family of
RBG links [33]. Here both B and G are 0-framed, and R is (a+b)-framed (so
in other words, the box “a” is a twist box for extra twists between R and its
parallel pushoff). The Manolescu-Piccirillo family plays an important role
in the following sections, so we will come back to that later. The RBG link
in Figure 2.7 actually records a family of annulus twisting homeomorphisms,
which we will discuss more in detail later in this section.

An RBG link is used to represent a 0-surgery homeomorphism. This is
given by the following lemma/definition.

Lemma 2.10 (Theorem 1.2 of [33]). Given an RBG link, there exist asso-
ciated knots KB and KG and a homeomorphism ϕL : S3

0(KB) → S3
0(KG).

Proof. Since S3
r,g(R ∪ G) is homeomorphic to S3 by definition, we can de-

fine KB to be the knot satisfying the homeomorphism S3
r,∗,g(R ∪B ∪G) →

S3
∗(KB). Here the framing ∗ denotes that we drill out the tubular neighbour-

hood of the knot and leave the cusp unfilled. Thus we can find a framing fb
such that we have the homeomorphism ψB : S3

r,b,g(R ∪ B ∪G) → S3
fb
(KB).
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a

b
c

d e

f

Figure 2.6: A family of special RBG links. Here B and G are 0-framed,
while R is (a+ b)-framed.

0

k − 1

k + 1

k

...

Figure 2.7: A family of non-special RBG links
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Since we require H1(S
3
r,b,g(R ∪ B ∪ G);Z) ∼= Z in the definition, we know

that the framing fb = 0.
Similarly, we can define the knot KG to be the knot satisfying the

homeomorphism S3
r,b,∗(R ∪B ∪G) → S3

∗(KG), and have a homeomorphism

ψG : S3
r,b,g(R ∪B ∪G) → S3

0(KG).

The composition ψB ◦ψ−1
G gives the associated homeomorphism ϕL.

Note that for general RBG links, it is in general very hard to obtain
the associated knots KB and KG. However, for a special RBG link, we can
easily perform handle slides and slam-dunk homeomorphisms to obtain the
associated knots.

The converse of Lemma 2.10 is also true:

Lemma 2.11 (Theorem 1.2 of [33]). For every 0-surgery homeomorphism
ϕ : S3

0(K) → S3
0(K

′), there is an RBG link L such that ϕ is its associated
0-surgery homeomorphism.

Proof. Define (B, b) to be (K, 0). Define (R, r) := ϕ((µK , 0)) to be the image
of the 0-framed meridian of B under the homeomorphism ϕ. Finally define
(G, g) := (µR, 0) to be the 0-framed meridian of R. Together, this defines
an RBG link L.

Indeed, there is a homeomorphism S3
0,r(B ∪ R) ∼= S3

0,0(K,µK) ∼= S3,
where the first map is the given homeomorphism ϕ, and the second a
slam-dunk homeomorphism. Also, there is a slam-dunk homeomorphism
S3
r,0(R,B) ∼= S3. The homology requirement immediately follows. Thus L

is indeed an RBG link.

Note that the RBG link constructed in this method is never special as
long as K is non-trivial.

Also note that the assignment given in this lemma is not unique. A
first example is to start with a special RBG link, and apply the above two
lemmas to get a non-special RBG link.

The above two lemmas show that the set of all RBG links completely
describes all 0-surgery homeomorphims. However, general RBG links are
hard to deal with, and thus we will consider other constructions as well.

Before moving on, it is worth to study how RBG links would depict
dualisable pattern and annulus twisting constructions. To see this, we need
the following lemma.

Lemma 2.12 (Theorem 7.1 of [33]). Fix an RBG link L with associated
knots KB,KG. If we do a number of slides of B (resp. G) over R to get a
new framed link L′, then L′ is also an RBG link, with its associated knots
K ′

B,K
′
G pair isotopic to the original associated knots KB,KG.
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Proof. We only prove the statement about sliding B over R thanks to sym-
metry of RBG links. Denote the new blue knot (B′, b′).

Note that the components R and G are left unchanged. Thus to check
that the link L is still an RBG link, we need to check that S3 surgered along
R and B′ is still S3, which is immediate since handle slides do not change
the homeomorphism type after the surgery. For the exact same reason, the
homology condition still holds.

To check that KB
∼= K ′

B, we construct a homeomorphism S3
0(KB) ∼=

S3
0(K

′
B) taking a zero framed meridian to a zero framed meridian. This

homeomorphism can be taken to be the composition ψB′ ◦ f ◦ (ψB)
−1 :

S3
0(KB) → S3

r,b,g(R ∪ B ∪ G) → S3
r,b′,g(R ∪ B′ ∪ G) → S3

0(K
′
B), where the

map f records the sliding homeomorphism. By chasing the zero framed
meridian, it is easy to see that the constructed map satisfies the required
conditions.

By excising the zero framed meridians, the constructed map restricts
to a map S3\ν(KB) → S3\ν(K ′

B) taking meridians to meridians, and thus
extending to a knot equivalence (S3,KB) → (S3,K ′

B).
The proof of KG

∼= K ′
G is similar.

With this lemma, we can proceed to draw and simplify RBG links asso-
ciated to dualisable patterns and annulus twisting constructions.

Dualisable Patterns

We first observe the following restrictions for RBG links.

• B ∪R ∼= B ∪ µB, R ∪R ∼= G ∪ µG.

• The linking number between B and G is zero lk(B,G) = 0.

Note that this restriction is different from being a special RBG link. For
simplicity, call this subset of RBG links the dualisable links.

We also note that for a dualisable link L, the two associated knots have
diffeomorphic zero-traces. Indeed, we consider the RBG link as a Kirby
diagram, with the R component as the 1-handle, and B,G components as
0-framed 2-handles. This yields a 4-manifold X. By sliding B over G, we
can see that X is diffeomorphic to the zero-trace of the knot KB. Similarly,
X is also diffeomorhic to the zero trace of KG. The two diffeomorphisms we
denote ΨB and ΨG, and the combined trace diffeomorphism we denote ΦL.

It turns out that the set of 0-surgery homeomorphisms recorded by du-
alisable links is exactly the set of homeomorphisms constructed from dual-
isable patterns [33] [42]. This is given by the following theorem in [42].

Theorem 2.13 (Proposition 4.2 of [42]). For any pair of knots K,K ′ arise
from a dualisable link, there exists a dualisable pattern P such that P (U) ∼=
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Figure 2.8: Sliding B over R

K and P ∗(U) ∼= K ′. Conversely, for any dualisable pattern P , there exists
a dualisable link L such that the knots associated are P (U) and P ∗(U).

Proof. We only prove the first assertion with a constructive proof. Reversing
the construction gives a proof for the second assertion.

We begin by isotoping the diagram such that R has no self-crossing and
B ∩ DR at a single point (DR denotes the obvious disk R bounds in the
diagram). From here we slide B under R such that B has no self crossings.
We can do this since we can reverse any crossing by a single handle slide
(c.f. Fig 5.11 of [20]). We record the signed number of slides required by s.
Then we slide B across R (−s) times as indicated by Figure 2.8. We denote
this link JB and the diffeomorphism corresponding to the slides described
above FB.

Now we cut out the R component, and consider B and G as knots in
S1 × S2. Since both B and G are isotopic to S1 × {∗}, we can consider
G ⊂ S1 × S2\ν(B) ∼= S1 ×D2 to be the pattern P .

By switching the role of B and G, we can accordingly define the link JG,
the diffeomorphism FG, and the dual pattern P ∗.

It is fairly easy to check that P and P ∗ defines a dualisable pattern. Also,
it is immediate from the construction that the slam-dunk homeomorphism of
R and B in JB composed with FB◦Ψ−1

B |∂ defines a homeomorphism S3 → S3

taking KG to P (U). Similarly we can prove that KB
∼= P ∗(U).

From the above theorem and observations, we know that the dualisable
patterns can be used to construct surgery homeomorphisms, and moreover
the homeomorphism always extends to a zero-trace diffeomorphism.

Annulus Twisting

Finally we quickly explain how to draw RBG links associated to Annulus
twistings. To do so, we directly follow the routine of Lemma 2.11. If we
twist the annulus once (n = 1 case), we get the left picture of Figure 2.9.

To make the RBG link easier to deal with, we make a few modifications.
Sliding the G component over R, followed by an isotopy, gets us the picture
on the right.
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Figure 2.9: The RBG links associated to annulus twistings

2.2 Equivalence Relations between Knot Traces

In this section, we will consider various equivalence relations in the study
of 4-manifolds between knot traces. Also, since knot traces have non-trivial
boundaries, we will also discuss the relative version of these equivalence rela-
tions, namely requiring the equivalence relation to respect the a priori fixed
boundary diffeomorphism. We will give some detailed definitions below.

Diffeomorphic

Smoothly
s-cobordant

Smoothly
h-cobordant

Stably
diffeomorphic

CP2-stably
diffeomorphic

Homeomorphic

Topologically
s-cobordant

Topologically
h-cobordant

Stably
homeomorphic

CP2-stably
homeomorphic

Simple homotopy
equivalent

Homotopy
equivalent

Figure 2.10: The equivalence relations among 4-manifolds

The equivalence relations considered in this section are depicted in Figure
2.10, which is adopted from the equivalence relations in the closed 4-manifold
cases [26]. However, since we are dealing with manifolds with non-trivial
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boundaries, for every equivalence relation in the chart there is a “relative”
version and an “absolute” version.

Definition 2.14. Given two 4-manifolds X and Y with homeomorphic
boundaries and a fixed boundary homeomorphism f : ∂X → ∂Y , X and Y
are said to be diffeomorphic (resp. homeomorphic) relative to f , or relatively
diffeomorphic (resp. homeomorphic) for short, if the boundary homeomor-
phism f extends to a diffeomorphism (resp. homeomorphism) F : X → Y ,
i.e. F |∂X = f . If the choice of the boundary homeomorphism f is arbitrary,
X and Y are said to be (absolutely) diffeomorphic (resp. homeomorphic).

The above definition can easily been adapted to the homotopy category,
but the resulting equivalence relation is stronger than homotopy equivalence,
as a typical homotopy equivalence does not map boundaries to boundaries.
To distinguish from the usual homotopy equivalence, we call the relative
version of the equivalence relation in the homotopy category “relative ho-
motopy equivalence” and its absolute version “weakly relative homotopy
equivalence”.

Definition 2.15. Given two 4-manifolds X and Y with homeomorphic
boundaries and a fixed boundary homeomorphism f : ∂X → ∂Y , X and
Y are said to be h-cobordant (resp. s-cobordant) relative to f , or relatively
h-cobordant (resp. s-cobordant) for short, if the closed 4-manifold X ∪f −Y
bounds a compact 5-manifold with boundary W such that the inclusion
maps iX : X ↪→ W and iY : Y ↪→ W are homotopy equivalences (resp.
simple homotopy equivalences). If the choice of the boundary homeomor-
phism f is arbitrary, X and Y are said to be (absolutely) h-cobordant (resp.
s-cobordant).

Note that the above definition is valid both in the smooth category
and the topological category. We will distinguish the resulting equivalence
relations by smooth h-cobordisms (resp. s-cobordisms) and topological h-
cobordisms (resp. s-cobordisms).

Definition 2.16. Given two 4-manifolds X and Y with homeomorphic
boundaries and a fixed boundary homeomorphism f : ∂X → ∂Y , X and
Y are said to be relatively stably diffeomorphic (resp. homeomorphic) if
there exists an integer n ≥ 0 such that f extends to a diffeomorphism (resp.
homeomorphism) F : X#nS2 × S2 → Y#nS2 × S2. If the choice of the
boundary homeomorphism f is arbitrary, X and Y are said to be (abso-
lutely) stably diffeomorphic (resp. homeomorphic).

Definition 2.17. Given two 4-manifolds X and Y with homeomorphic
boundaries and a fixed boundary homeomorphism f : ∂X → ∂Y , X and
Y are said to be relatively CP2-stably diffeomorphic (resp. homeomorphic)
if there exist integers m,n ≥ 0 such that f extends to a diffeomorphism
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(resp. homeomorphism) F : X#mCP2#nCP2 → Y#mCP2#nCP2. If the
choice of the boundary homeomorphism f is arbitrary, X and Y are said to
be (absolutely) CP2-stably diffeomorphic (resp. homeomorphic).

Note that most of the arrows in the chart of equivalence relations above
are immediate. The fact that an h-cobordism implies stably isomorphic (in
either categories) when π1 = 1 follows immediately from the proof of Wall’s
theorem [51]. The fact that stably isomorphic implies CP2-stably isomorphic

follows from the diffeomorphism between S2 × S2#CP2 ∼= CP2#CP2#CP2.
Now we go back to knot traces. To start with, we know that since any

two knots as maps S1 → S3 are homotopic to each other, all knot traces are
homotopy equivalent to Xn(U), which is furthermore homotopy equivalent
to X0(U) ∼= S2×D2 ≃ S2, as we can retract a 2-handle of any framing back
to its core.

Also, since knot traces are simply connected, the Whitehead torsion of
the aforementioned homotopy equivalence vanishes, and thus knot traces are
also simply homotopy equivalent to each other.

Similarly, two knot traces are relatively (smooth) s-cobordant if and only
if they are relatively (smooth) h-cobordant.

For more complicated equivalence relations, it can be summarised that
the obstruction of two simply-connected 4-manifolds with boundary being
homeomorphic rel boundary is Boyer’s θ-obstruction [5], which is completely
determined by the parity in the case of knot traces. This is completely
well-understood, which will be discussed in detail in subsection 2.2.1. The
obstructions of two knot traces being diffeomorphic is not yet completely
understood. In subsection 2.2.2, we will discuss some known obstructions
and counterexamples.

2.2.1 Topological Obstructions

All simply-connected compact 4-manifolds with non-trivial boundaries are
classified by Boyer’s result [5]. To start with, we quickly recall the definition
of the parity of a 4-manifold and a version of Boyer’s theorem.

Definition 2.18. A compact oriented simply-connected 4-manifold X is
called even if its intersection form QX is even, i.e. QX(α, α) is even for any
α ∈ H2(X). Otherwise, X is said to be odd.

Note that in the simply-connected case (and more generally, as long as
the first homology has no 2-torsion), a 4-manifold X admits a spin structure
if and only if its intersection form is even. For details, see section 5.7 of [20].

Theorem 2.19 (Proposition 0.8 of [5]). Let X and Y be two compact 4-
manifolds with homeomorphic boundaries and equivalent Kirby-Siebenmann
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invariants. Let f be an orientation preserving homeomorphism on the bound-
aries. If there exists an isometry Λ between the intersection pairings of the
two manifolds, such that the following diagram commutes,

0 H2(∂X) H2(X) H2(X, ∂X) H1(∂X) 0

0 H2(∂Y ) H2(Y ) H2(Y, ∂Y ) H1(∂Y ) 0

f∗ Λ∗ f∗Λ∗

then

• If H1(∂X;Q) = 0 or X is odd, then f always extends to a homeomor-
phism F : X → Y .

• If H1(∂X;Q) ̸= 0 and X is even, then f extends to a homeomorphism
F : X → Y if and only if the 4-manifold X ∪f −Y is spin.

If we apply the above theorem of Boyer to the case of zero traces, sta-
bilised zero traces, and CP2-stabilised zero traces, we have the following
theorem.

Theorem 2.20. Given a pair of knots K and K ′ such that there is an
orientation preserving homeomorphism ϕ : S3

0(K) → S3
0(K

′). Then the
following statements are equivalent.

1. The boundary homeomorphism ϕ extends to a homeomorphism Φ :
X0(K) → X0(K

′).

2. The boundary homeomorphism ϕ extends to a relative homotopy equiv-
alence Φ : X0(K) → X0(K

′).

3. There is a relative h-cobordism between X0(K) and X0(K
′) correspond-

ing to the map ϕ.

4. The boundary homoemorphism ϕ extends to a stable diffeomorphism
Φ : X0(K)#nS2 × S2 → X0(K

′)#nS2 × S2.

5. The boundary homeomorphism ϕ extends to a stable homeomorphism
Φ : X0(K)#nS2 × S2 → X0(K

′)#nS2 × S2.

6. The boundary homeomorphism ϕ is even, i.e. the 4-manifold X(K)∪ϕ

−X(K ′) has even intersection form.

Proof. (5) ⇒ (6) and (6) ⇒ (1) are direct applications of Boyer’s theorem.
(1) ⇒ (3) and (3) ⇒ (4) are Wall’s theorem: two homeomorphic simply-

connected 4-manifolds are h-corbordant and thus stably diffeomorphic.
(1) ⇒ (2) and (4) ⇒ (5) are immediate.
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For (2) ⇒ (6), we prove by using a variation of Boyer’s original proof.
(The same idea can be used to prove (5) ⇒ (6).)

By contradiction, assume that ϕ is odd.
Then we consider the following two closed 4-manifolds. Define W :=

X0(K) ∪id −X0(K) be the double of X0(K), which we know has even in-
tersection form. Define W := X0(K) ∪ϕ −X0(K

′) as usual, which has odd
intersection form by assumption. We will build a homotopy equivalence
f : W → X, which leads to an immediate contradiction due to the differ-
ence of parity of the intersection forms.

Define f :W → X to be the identity on the first copy of X(K), and the
relative homotopy equivalence Φ on the second copy. Since Φ restricts to the
homeomorphism ϕ on the boundary, we know that the map f is continuous.

Now we pick a tubular neighbourhood B for S3
0(K

′) ↪→ X. We pick a
small enough tubular neighbourhood A for S3

0(K) ↪→ W such that f(A) ⊂
B. With this condition, we can apply naturality of Mayer-Vietoris sequence.
Up to homotopy equivalence, we have the following diagram.

H2(S
3
0(K)) H2(X0(K))⊕H2(X0(K)) H2(W ) H1(S

3
0(K))

H2(S
3
0(K

′)) H2(X0(K))⊕H2(X0(K
′)) H2(X) H1(S

3
0(K

′))

Note that all verticals maps are induces by (the restrictions) of f , and
all but the third one are isomorphisms. Thus f∗ : H2(W ) → H2(X) is also
an isomorphism.

However, sinceW and X are constructed as simply connected manifolds,
we combine the previous observation with Hurewicz theorem and Whitehead
theorem, we know that W and X are in fact homotopy equivalent, yielding
the contradiction.

Lemma 2.21. Given a pair of knots K and K ′ such that there is an ori-
entation preserving homeomorphism ϕ : S3

0(K) → S3
0(K

′). Then ϕ always
extends to a CP2-stable diffeomorphism between knot traces.

Proof. By applying Boyer’s theorem for odd 4-manifolds, we know that ϕ
extends to a CP2-stable homeomorphism.

However, we can think of ϕ as a map ∂(X0(K)#CP2) → ∂(X0(K
′)#CP2).

Wall’s theorem told us that ϕ extends to a stable diffeomorphism for the
blown-up knot traces and thus a CP2-stable diffeomorphism for the original
knot traces.

Since all of the above mentioned equivalence relations (including relative
homotopy equivalence) restrict to some boundary homeomorphism, thus we
can also conclude that two zero traces are (absolutely) homeomorphic if and
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only if they are stable homeomorphic if and only if they are s-cobordant if
and only if they are weakly relative homotopy equivalence.

Also note that we can easily apply Boyer’s theorem to the case of n ̸=
0 to study general knot surgery and traces. Since in this case the first
homology of the n-surgery is pure torsion, there is no geometric obstruction.
Thus, as long as there is no topological obstruction (i.e. the boundary
homeomorphism maps the meridian of the knot to the meridian of the knot),
the n-traces are always relatively homeomorphic (s-cobordant, ...) to each
other.

Next we will introduce some concrete examples.

Gluck Twist

The first counterexample is given by Gluck [16], which shows that the above
described topological obstruction could exist in the case of as easy as the
unknot.

Consider S3
0(U) ∼= S2 × S1 and the following map,

ϕ : S2 × S1 → S2 × S1

(x, t) 7→ (Φt(x), t)

where Φt denotes the rotation along a fixed axis through an angle of 2πt
if we consider S1 as R/Z.

The map ϕ is odd, for if we glue two pieces of X0(U) ∼= S2 ×D2 using
this map, we will have S2×̃S2, as described by the second Kirby diagram in
Figure 2.11.

0 0 1 0

Figure 2.11: Left: the Kirby diagram for S2×S2. Right: the Kirby diagram
for S2 × S2 after the Gluck twist, i.e. S2×̃S2.

Note that to cut out an embedded copy of S2 ×D2 and glue it back in
via the map ϕ gives the definition of the Gluck twist. The two pictures in
Figure 2.11 describe the easiest Gluck twist, taking S2 × S2 to S2×̃S2.

This examples shows that even in the simplest case, a 0-surgery homeo-
morphism might not extend to a 0-trace homeomorphism.

21



RBG Constructions

In the case of RBG constructions, we consider the following family of special
RBG links called the Manolescu-Piccirillo family [33], as described by Figure
2.12.

a

b
c

d e

f

Figure 2.12: The Manolescu-Piccirillo family of RBG links

We will call an RBG link even (odd) if the associated homeomorphism
ϕL : S3

0(KB) → S3
0(KB) is even (odd), i.e. if and only if the 4-manifold

X0(KB) ∪ϕL
−X0(KG) is even (odd).

Moreover, we have the following lemma.

Lemma 2.22 (Lemma 4.2 of [33]). A special RBG link is odd if and only
is r is odd.

Proof. Let γ ⊂ S3
0(KB) be the framed image of the 0-framed meridian under

the homeomorphism ϕL. By Akbulut’s gluing upside-down trick, we know
that KB ∪ γ is a Kirby diagram for the manifold X0(KB) ∪ϕL

−X0(KG).
Thus we know that the manifold is even if and only if the framing of γ is
even, as we can reading off the intersection matrix from the Kirby diagram
fairly easily.

22



r 0

...

...

µG

0

...

...

γ

r

0

Figure 2.13: The meridian behaves as a framed ghost of r after a slide.

Now we show that γ is r-framed. Observe the first picture of Figure
2.13, which depicts the local picture of the special RBG link. To get the
knot KB, we perform the slide indicated in the picture. As shown in the
second picture, after the slides, γ can be considered as a framed ghost of R.
In particular, γ is r framed.

Combining the above results, we obtain the result that the boundary
homeomorphism ϕL associated to a special RBG link L extends to a 0-trace
homeomorphism if and only if r is even.

Annulus Twisting

In the case of Annulus twisting, we restrict our attetion to a specific family
of knots. Denote the family of knots in Figure 2.14 by Jm[k].

...m
k

Figure 2.14: The family of knots Jm[k]

Note that the homeomorphism corresponding to annulus twisting once
is even if and only if k is odd. This can be seen by keeping track of the
meridian. Note that we can relate annulus twisting once of the above family
of knots to the following (not necessarily special) RBG link.
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Figure 2.15: The RBG links associated to annulus twistings

Dualisable Patterns

As we have discussed before, constructions via dualisable patterns described
in the last section do not yield any counterexamples here. Moreover, the
0-traces constructed in this way are actually diffeomorphic to each other.
Later, the notion of dualisable links will be generalised to what is called
property U to construct pairs of diffeomorphic knot traces. This will be
discussed more in detail in the following subsection.

Note that in the special case when the mapping class group of the 0-
surgery is trivial, the failure of boundary homeomorphism extending to the
0-trace actually means that the two knot traces are (absolutely) not home-
omorphic.

By calculating the symmetry group with the help of Snappy [7], we found
that even within the Manolescu-Piccirillo family, there exist RBG links that
are odd such that MCG(S3

r,b,g(R∪B∪G)) = 1. Figure 2.16 describes such a
pair of associated knots (in which case (a, b, c, d, e, f) = (−2, 1, 2, 1, 2, 1) and
thus r = a + b = −1). The detailed codes and results I used can be found
at https://nickteng.github.io/pages/counterexamples.html.

Note that this also gives an example of why Freedman theorem does not
hold in the case of nontrivial boundaries.

2.2.2 Smooth Obstructions

On the matter of classifying knot traces up to diffeomorphism, things become
more complicated. In fact, it is not yet completely understood whether
or not the boundary homeomorphism extends to a trace diffeomorphism.
However, we do have a sufficient condition called “property U” that ensures
relative diffeomorphism. This property is closely related to (and in fact
inspired by) the dualisable constructions, which will be the main focus in
the first part of this section.
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Figure 2.16: The associated KB and KG for the RBG links in the MP-
family. For the pair of knots with non-homeomorphic 0-traces, fill in
(a, b, c, d, e, f) = (−2, 1, 2, 1, 2, 1).

Turning to absolute exotica, although also not completely understood,
we do have a few examples and ways of detection.

One possible way is to transform the exotica problem into a knot concor-
dance problem, by using an invariant that is simultaneously a concordance
and trace invariant. One possible such invariant is the ν invariant from Hee-
gaard Floer theory, which is relatively easier to calculate thanks to the knot
Floer homology Calculator. This fact is given by the following theorem [21].

Theorem 2.23 (Theorem 1.4 of [21]). If the oriented knot traces Xn(K)
and Xn(K

′) are diffeomorphic, then ν(K) = ν(K ′), except possibly if n < 0
and {ν(K), ν(K ′)} = {0, 1}.

This theorem provides us a tool for distinguishing the (absolute) diffeo-
morphism type for knot traces. For example, the associated 0-traces of the
link L(1, 1, 1, 1, 1, 1) in the MP family are homeomorphic (since in this case
r = 2 is even), but has different ν-invariants: via the calculation of Snappy,
the ν invariant for the associated knot KB vanishes while |ν(KG)| = 2. This
gives us a first example for a pair of exotic knot traces. The proof of the
above theorem, however, will be delayed to later sections of this thesis.

As for examples of absolutely exotic knot traces, the first and most
famous exotic pair is constructed by Yasui [52]. We will focus on the con-
struction in the second part of this section.

Dualisable links and Property U

In the previous section, we have showed that all pairs of knots generated
by dualisable patterns can be related by a dualisable link [42]. Thus knot
traces generated by dualisable patterns are always relatively diffeomorphic.
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Later in [33], this was modified into a more general property called property
U , defined as follows.

Definition 2.24 (Property U). A 0-surgery homeomorphism ϕ : S3
0(K) →

S3
0(K

′) has property U if there is a diagrammatic choice of the framed knot
γ := ϕ(µK , 0) in the standard diagram of S3

0(K
′) such that γ is 0 framed

and appears unknotted in the diagram.

Lemma 2.25 (Theorem 3.13 of [33]). A 0-surgery homeomorphism ϕ with
property U extends to a 0-trace diffeomorphism.

Proof. Following the schematic below, we give the following definitions. Let
X be the tubular neighbourhood of the cocore of the 2-handle in X0(K).
And let X ′ ⊂ X be a open neighbourhood of the cocore, which is just a
D2 × D̊2. Let D be the standard slice disk of ϕ(µK) in B4 (the 0-handle of
X0(K

′)). Similarly define Y to be the tubular neighbourhood ofD and Y ′ an
open neighbourhood. Denote F ′ to be the natural bundle isomorphism X →
Y . Since bothK and ϕ(µK) are 0-framed, the isomorphism F ′ coincides with
ϕ on the 0-surgery part of the boundary.

X0(K)

2-h

X

K

X0(K
′)

2-h

Y

ϕ(µK)

K ′

Figure 2.17: The schematics for the two constructions used in the proof

Note that the manifold X0(K)\X ′ is clearly diffeomorphic to the stan-
dard B4. We claim that the 4-manifold X0(K

′)\Y ′ (clearly has boundary
S3) is diffeomorphic to the standard B4. Observe that X0(K

′)\Y ′ has a
Kirby diagram consisting of a 1-handle along ϕ(µk) and a 0-framed 2-handle
along K ′. By surgering along the one handle, we can think of the boundary
as S3 obtained by surgery along a knot l in S1 × S2. Gabai’s proof of prop-
erty R [15] ensures that l is isotopic to the standard S1 × {∗}. Going back
one step, we now know that the handles are actually a cancelling 1-2 pair.
Thus the manifold X0(K

′)\Y ′ is just diffeomorphic to the standard B4.
Finally we construct the desired diffeomorphism. Note that we F ′|D2×∂D2

and ϕ|∂X0(K)\νK glues to a piecewise homeomorphism from ∂(X0(K)\X ′) to
∂(X0(K

′)\Y ′). However, this boundary homeomorphism extends to a dif-
feomorphism F : X0(K)\X ′ → X0(K

′)\Y ′ as there is only one isotopy class
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on S3. Together with F ′, this defines a diffeomorphism between the knot
traces.

The converse of the above lemma is still a conjecture.
One important application of the above observation is that if two knots

K and K ′ are related to each other by an RBG link with property U , then
K is slice if and only if K ′ is [43]. We will focus on this specific matter in
sections 2.3.1 and 3.2.2 of this survey.

Yasui’s Example

Finally we survey Yasui’s construction [52]. This construction provides us
an infinite family of examples of absolutely exotic 0-traces. In this example,
absolute exotica is detected by comparing 0-shake genera, which is tauto-
logically a 0-trace invariant.

Consider the following patterns Pm and Qm in Figure 2.18.

−m −2 −m

Figure 2.18: The family of patterns Pm and Qm

Note that the pattern P0 is exactly the Mazur pattern.
Now consider the knot traces X0(Pm(K)) and X0(Qm(K)) for some knot

K ⊂ S3. We claim that they are an (absolute) exotic pair for a suitable
choice of K.

We first prove that the two knot traces are homeomorphic. The knot
traces are related by a cork twisting along an embedded cork (e.g. for m = 0
this is the Mazur cork). This operation does not change the homeomorphism
type of the manifold, as indicated by Freedman’s theorem [12] stated as
follows.

Theorem 2.26. Any homoemorphism on the boundary of a contractible
4-manifold extends to a homeomorphism of the 4-manifold.

In terms of handle diagrams, this homeomorphism is summarised by
Figure 2.19. The top-left picture describes the 0-trace X0(Pm(K)). Doing a
zero-dot surgery as indicated is equivalent to a cork twist (e.g. when m = 0,
this is a cork twist along the Mazur cork), and thus does not change the
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Figure 2.19: The two 0-traces are homeomorphic
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homeomorphism type by Freedman’s theorem. The handle diagram for the
surgered manifold is given by the top-right picture. Now we introduce a
cancelling 1-2 handle pair, which gives the mid-left picture after a quick
handle slide. Sliding the original 2-handle to the newly introduced one
gives the mid-right diagram. Now we cancel the original 1-handle with the
slid 2-handle. This gives the bottom-left picture, which is isotopic to the
bottom-right picture, which describes X0(Qm(K)).

Thus we have shown the homeomorphism between the two knot traces.

Next we prove non-diffeomorphism. To do so, we will use tools from
Legendrian knot theory, and thus we make some additional assumptions.
We require the knot K to satisfy 2g4(K) = ad(K)+2 and t̂b(K) ≥ 0, where

• ad(K) denotes the maximal adjunction number among all Legendrian
representatives for the knot K,

• t̂b(K) denotes the maximal Thurston-Bennequin number among all
Legendrian representatives K for K satisfying ad(K) = ad(K).

Note that under this requirement, we can add zig-zags to find a Leg-
endrian representative K for K such that ad(K) = ad(K) and tb(K) = 0.
A first example for this requirement is just the right-handed trefoil knot
T2,3. Now we can find a Legendrian representative for the knot Pm(K) and
Qm(K). These are captured by Figures 2.20 and 2.21.

−m

K K

Figure 2.20: Left: a Legendrian representative for Pm(K) when m ≥ 1.
Right: a Legendrian representative for P0(K).

From the two pictures in Figure 2.20, we can read off that for the Leg-
endrian representative for P0(K) described above, it has tb = tb(K) + 2 and
rotation number |r| = |r(K)|. By adding a zig-zag to the picture above, we
get a Legendrian representative with tb = 1 and |r| = |r(K)|+ 1.

Now, to show that the knot traces are not diffeomorphic, we compare
their 0-shake genera. To do so, we need the following facts.
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−m

K

Figure 2.21: A Legendrian representative for Qm(K).

• By applying the Stein adjunction inequality [28], we have |r(K)| +
1 ≤ 2g

(0)
s (Pm(K)) − 2. This implies g

(0)
s (Pm(K)) ≥ 1

2(|r(K)| + 3) =
1
2(ad(K) + 4) = g4(K) + 1.

• The knots K and Qm(K) are concordant, which is ensured as the
pattern Qm is a band sum of the longitude of the solid torus and an
unlinked unknot. Consequently, K and Qm(K) have the same slice
genus.

• The slice genus of any knot is larger or equal to its 0-shake genus.

Combining the above three results, we have the inequality g
(0)
s (Pm(K)) ≥

g4(K) + 1 > g4(Qm(K)) ≥ g
(0)
s (Qm(K)). Thus the two knot traces are not

diffeomorphic.
Note that the above construction can be easily generalised to any n-trace.

For details, see [52].

2.3 Knot Traces as Plugs

In [3], Akbulut and Yasui first defined the term “plugs”. A plug is a Stein
manifold that acts like the non-simply-connected analogy for corks. For
simplicity, we remove the Stein condition on the manifold and the involution
condition on the boundary map, calling it a (loose) plug. To be precise, we
give the following definition.

Definition 2.27. A (loose) plug is a pair (W, f) such that W is a compact
4-manifold with non-trivial boundary, and f : ∂W → ∂W a diffeomorphism
of 3-manifolds satisfying:

• f does not extend to an automorphism (in either TOP or Smooth
category) of W .
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• W embeds in some 4-manifold X such that (X\W )∪f W provides an
exotic copy of X.

Just like the cork case, we call the operation X 7→ (X\W ) ∪f W a plug
twist.

In this section, we focus on knot traces acting as plugs. In subsection
2.3.1, we will see that by plug twisting zero traces for topologically slice but
not smoothly slice knots, we get exotic R4’s. In subsection 2.3.2, we will
modify the technique a little bit and survey some results on attempting to
find exotic S4’s. In subsection 2.3.3, we prove that there exist knot traces
acting as infinite order plugs (just like its cork counterpart proved in [18]).

2.3.1 To Construct Exotic R4’s

In this section we relate the plug twisting problem for zero traces to sliceness
problems and construct am infinite family of exotic R4’s. We start with the
essential tool to study knot traces as plugs: the trace embedding lemma. The
exact origin for the result is unknown, but for references, see e.g. [25], [20],
or [32]. The trace embedding lemma is stated as follows.

Theorem 2.28 (Trace embedding lemma). For a knot K in S3, K is slice
if and only if its 0-trace X0(K) embeds in S4. This result holds in both the
smooth category and the topological locally flat category.

Proof. We first prove the “only if direction”. Note that S3 decomposes S4

into two pieces. We put our knot K in S3 and consider one of the two pieces
as the 0-handle. Since K bounds a disk in the other piece, we can take its
tubular neighbourhood and consider it as the 2-handle. Together we have
constructed an embedded 0-trace.

Now we prove the “if” direction. Consider the piecewise linear embed-
ding F : S2 → X4 whose image consists of the core of the 2-handle and a
cone over the knot K in the 0-handle. Composing with the assumed em-
bedding, we get a piecewise linear embedding ι ◦ F : S2 → S4. Cutting
out a small neighbourhood of the cone point, we get a “nice” embedding
D2 → D4, whose boundary of the image is the knot K. Thus the image
defines the slice disk that we seek. The idea of the proof is given by Figure
2.22.

Note that in the statement of the theorem, it doesn’t matter whether we
choose to use the space S4 or R4, or B4.

Remark. There are several generalisations for the trace embedding lemma.

1. The ambient space can be changed from B4 to any closed 4-manifold
W . In this settings, the trace embedding lemma generalises to:
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K Core of the 2-handle

Figure 2.22: The cone away from the non-smooth point together with the
core of the 2-handle gives a slice disk.

Lemma 2.29. A knot K ⊂ ∂(W\B4) is H-slice (that is, bounds a
null-homologous disk in W\B4) if and only if −X0(K) embeds in W
by an embedding that induces the zero map on second homology.

2. If we push off the slice disk D in W\B4, we can define an integral
framing on K. In this settings, the trace embedding lemma generalises
to:

Lemma 2.30. A framed knot (K, k) in ∂(W\B4) is slice (that is,
bounds an embedded disk with framing k) if and only if −Xk(K) embeds
in W .

For more details, see [35].

3. In [23], Hayden and Piccirillo generalised the notion of knot traces to
what is called “n-framed, genus g traces Xg

n(K)”, that is, B4 with a
“thickened” punctured genus g surface glued along the knot K. Under
this settings, the generalised trace embedding lemma becomes:

Lemma 2.31. For a knot K ⊂W\B4, −Xg
n(K) embeds intoW if and

only if the mirror −K bounds a smooth genus g surface Σ in W\B4

with [Σ] = β ∈ H2(W\B4, S3) ∼= H2(W ) such that β · β = n, where β
is the image of the generator of the second homology of Xg

n(K) under
the map induced by the embedding.

Now if we have a knot K that is topologically slice but not smoothly
slice, we know immediately from the trace embedding lemma that its zero-
trace X0(K) admits a locally flat embedding into R4, but there is no smooth
embedding.
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Removing the knot trace via the locally flat embedding yields a topo-
logical 4-manifold U := R4\X0(K). It turns out that this manifold admits
a smooth structure, as do all non-compact, connected, 4-manifolds. This
result is given by the following theorem [45], [29], [11], [46].

Theorem 2.32. The natural map TOP (4)/O(4) → TOP/O is 5-connected.
In particular, every non-compact, connected component of a topological 4-
manifold admits a smooth structure.

Proof. Proof omitted as it’s way beyond the scope of this survey. For details,
see e.g. Chapter 21 of [4].

Next we glue U and X0(K) back together. We can do this since every
homeomorphism of a 3-manifold is isotopic to a diffeomorphism. This gives
us a new smooth 4-manifold R.

Tautologically R is homeomorphic to R4. However, we know that X0(K)
embeds smoothly into R. Thus R cannot be diffeomorphic to the standard
R4 by the trace embedding lemma.

Finally we give some explicit examples. The most famous knot that is
topologically slice but not smoothly slice is the Conway knot 11n34. This
knot has trivial Alexander polynomial, and thus is topologically slice [11].
As for non-sliceness, the problem remained a conjecture for decades until
finally solve by Piccirillo [43]. More details will be shed in the next chapter.

2.3.2 Attempt on Exotic S4’s

One of the most famous conjecture and motivating question in 4-manifold
topology is the smooth 4 dimensional Poincaré conjecture (SPC4).

Conjecture. Every homotopy 4-sphere is diffeomorphic to the standard
4-sphere.

A naive attempt to find a counterexample for SPC4 (i.e. an exotic 4-
sphere) is to directly apply the same technique used in the last subsection.
However, the carved out topological manifold S4\X0(K) is no longer non-
compact, and does not necessarily have a smooth structure. Thus we need
some modifications to attempt on disproving SPC4.

In [33], Manolescu and Piccirillo proposed an attempt on constructing
exotic S4’s. The same attempt can also be applied to detect exotic #nCP2’s.
By convention, #0CP2 denotes the 4-sphere. In what follows, let W denote
a standard #nCP2.

Manolescu-Piccirillo ask the following question: does there exist pairs of
knots (K,K ′) in W ◦ :=W\B4 satisfying the following properties:

1. There exists a 0-surgery homeomorphism ϕ : S3
0(K) → S3

0(K).

2. K is H-slice in W .
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3. K ′ is not H-slice in W .

If the answer to the question above is positive, then we can construct an
exotic copy of W . Indeed, by cutting out a copy of the zero-trace X0(K)
(applying the trace embedding lemma) and plugging in X0(K

′), we have
a closed manifold X homeomorphic to the original manifold W . Here the
homeomorphism is ensured by the Freedman’s classification, as the knot
trace surgery leaves the homology of the 4-manifold unchanged, while the
simply-connectedness is ensured by Seifert-Van Kampen theorem. On the
other hand, since the newly constructed manifold X has a zero-trace of K ′

smoothly embedded inside, we know thatK ′ has to be H-slice inX. Combin-
ing with the third property above, we know that X cannot be diffeomorphic
to W .

Unfortunately, the question posed above remains open and there remains
no example of a pair of knots satisfying the above three conditions. Conse-
quently, we take one step back and find promising possibilities instead. To
be specific, we nullify the second restriction above and transfer the exotica
problem to a sliceness problem.

Recall from the first section that every 0-surgery can be represented by
an RBG link. Also recall that for a knot K to be H-slice in some #nCP2,
its Rasmussens’s invariant s(K) has to be non-negative [31]. Under this
settings, we transfer our problem into finding RBG links L with associated
knots K and K ′ such that:

1. The sliceness of K is not determined. In particular, its s-invariant
vanishes s(K) = 0.

2. The s-invariant for K ′ is negative. In particular, K ′ is not H-slice in
any #nCP2.

To find interesting examples of RBG links, Manolescu and Piccirillo went
through 3375 links in the Manolescu-Piccirillo family of RBG links (Fig
2.12), with a, c, e ∈ [−2, 2], b, d, e ∈ [−1, 1], and found 23 promising exam-
ples. Among the 23 knots, five knots have vanishing Alexander polynomial
and thus are topologically slice [12]. The five knots in Figure 2.23 were can-
didates for being slice, and thus candidates for exotic 4-spheres. The rest
of the 18 knots were proved to be algebraic but not topologically slice, and
thus are only candidates for exotic #nCP2’s. We leave the details to [33].
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Figure 2.23: The five knots that has the potential to generate exotic S4’s

Unfortunately, in 2022 Nakamura proved in [35] that the five knots above
are in fact not slice. To be precise, he proved the following:

Lemma 2.33 (Theorem 3.9 of [35]). Let (L,K,K ′) be a special RBG link
and its associated knots satifying the following conditions:

• The red component R is the unknot U .

• B bounds a properly embedded disk ∆B intersecting R in 1 point, and
intersecting G in at most 2 points.

• G bounds a properly embedded disk ∆G intersecting R in 1 point, and
intersecting B in at most 2 points.

(Note that the last two conditions are called the small RBG conditions
in [33] and [35].)

Then we have the followings

• If K is H-slice in some #nCP2, then s(K ′) ≥ 0.

• If K is H-slice in some #nCP2, then s(K ′) ≤ 0.

• If K is slice in S4, then s(K ′) = 0.

In particular, this applies to all of the Manolescu-Piccirillo family of
RBG links. Consequently, the five “promising” knots are not slice, and all
23 knots do not yield candidates for exotic #nCP2 detectable by Rasmussen’s
s-invariant.
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It is worth noting that Nakamura’s results does not close the door for
finding exotic S4’s and #nCP2’s in the technique introduced by Manolescu-
Piccirillo. In particular, the Manolescu-Piccirillo family of RBG links can
still possibly yield interesting examples, given that we do not obstruct slice-
ness by Rasmussen’s s-invariant. Also, if we fix on using the s-invariant,
general RBG-links can still provide interesting examples.

Most recently in 2023, Qianhe Qin generalised the construction of RBG
links to represent Dehn-surgeries of all integral slopes [44]. Also, machine
learning is used to detect ribbon knots [14]. Both results might shed some
light on the constructions of new exotic manifolds.

2.3.3 Infinite Order Plugs

In 2017, Robert Gompf proved the existence of infinite order corks [18].
Namely, there exists a cork (C, f) such that fk does not extend to a self-
diffeomorphism of the cork for any k. In fact, if we do a cork twist via such
maps fk, it is possible to result in pairwise non-diffeomorphic 4-manifolds.
In this section, we will adopt this idea to show that knot traces can actually
behave as infinite order plugs. This is given by the following theorem.

Theorem 2.34. There exists an integer n and a knot trace Xn(K), together
with a boundary automorphism ϕ on S3

n(K) such that the iterated automor-
phism ϕk does not extend to a trace self-diffeomorphism for any k > 0.

Note that if a boundary diffeomorphism ϕ actually extends to the knot
trace, a plug twist will not change the diffeomorphism type of a 4-manifold.
Thus to prove this theorem, we wish to find a (closed) 4-manifold containing
Xn(K) such that doing a plug twist via ϕk with result in pairwise non-
diffeomorphic 4-manifolds.

To do so, we will take the closed 4-manifold to be the elliptic surface
E(m). We know from Fintushel and Stern’s work that if n ≥ 2, the
knot surgery construction of E(m) using a collection of knots distinguished
by Alexander polynomials can result in a collection of pairwise exotic 4-
manifolds [13]. Here we take the collection of knots to be the twist knots
Kk, described by the following diagram.

k

Figure 2.24: The family of twist knots
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Thus to prove Theorem 2.34, we only need to prove the following lemma.

Lemma 2.35. There exists an integer n and a knot trace Xn(K) together
with a boundary automorphism ϕ such that Xn(K) embeds in E(m), and
twisting this knot trace via the boundary automorphism ϕk will change the
diffeomorphism type of E(m) to the knot surgered 4-manifold E(m)Kk

for
any k ≥ 0.

Before proving the lemma, we first have a quick review on elliptic surfaces
E(m) and knot surgeries on elliptic surfaces.

The elliptic surface E(1) has the diffeomorphism type of CP2#9CP2.
Algebraically, it is constructed by blowing up the 9 intersection points of
the zero set of two generic degree 3 homogeneous polynomials in CP2. By
inductively taking fibre sums with E(1) (i.e. taking out the tubular neigh-
bourhoods of a generic fibre for both manifolds and glue together via an
orientation reversing diffeomorphism), we have the elliptic surface E(m).
Note that E(2) has the diffeomorphism type of the K3 surfaces. Also note
that E(m) has the following standard Kirby diagram (e.g. see [20] or [2]).
Notice that the red “frame” on the outside is just a copy of T2×D2 visible in
the diagram, which can be seen as a generic T2 fibre for the elliptic fibration.
It is worth pointing out that this canonical handle decomposition for E(m)
has no 3-handles.

6m

6m

all −1

0

−m

∪ 4-handle

0

Figure 2.25: Left: the standard handle diagram for E(m), where the top-
bottom pair of balls represents a 1-handle, and the left-right pair represents
another. Right: the red part of the diagram in carved-out notation, which
represents T2 ×D2.

To do a knot surgery on an elliptic surface with a knot K, we remove
the T2 ×D2 shown in the standard diagram of E(m), and replace with the
manifold (S3\K)×S1 with the boundary diffeomorphism ∂(S3\K)× S1 →
∂(T2 ×D2) identifying:
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• the meridian of the knot K and the curve {∗}×S1 with the two circle
factors in T2.

• the canonical longitude of the knot K with the curve {∗} × ∂D2.

This resulting knot surgered closed 4-manifold is denoted by E(m)K .
Note that throughout this section, we will use S3\K to denote the compact
knot complement for the knot K.

Notice that after removing a tubular neighbourhood of a generic T2 fibre,
the resulting manifold E(m)\(T2×D2) is still simply connected. To see this,
we first turn the handle diagram in Figure 2.25 upside down. This yields
a handle decomposition for −E(m) consisting of a 0-handle (the original 4-
handle), no 1-handle (as there was no original 3-handles), (12m+2) 2-handles
(the original 2-handles), two 3-handles (the original 1-handles), and a single
4-handle (the original 0-handle). Then we can remove the now upside down
red part (now consisting of a 4-handle, two 3-handles, and a 2-handle) from
the handle decomposition, as the red part represents a generic T2 fibre. This
gives a handle decomposition for −(E(m)\(T2 × D2)) consisting of only a
0-handle, and (12m+1) 2-handles. In particular, E(m)\(T2×D2) is simply
connected. Consequently, a Seifert-Van Kampen theorem statement ensures
that the knot surgered manifold E(m)K is also simply connected, as both
generators for the fundamental group of (S3\K) × S1 (the meridian of K,
and the S1 factor) have representatives on the boundary T3, and thus are
glued to homotopically trivial loops in E(m)\(T2 ×D2).

On the other hand, note that the knot surgery operation does not change
the intersection form of the closed 4-manifolds. This is because the second
homology classes of E(m) (resp. E(m)K) comes in three types:

1. surfaces entirely in E(m)\(T2 ×D2) or T2 ×D2 (resp. (S3\K)× S1).

2. surfaces entirely in the intersection of the two pieces, T3.

3. surfaces intersecting T3 transversally along homologically non-trivial
loops in T3.

However, as T2×D2 and (S3\K)×S1 have isometric intersection forms,
and we choose to identify corresponding homologically non-trivial loops,
all the intersections that might happen within or between the three types
remain unchanged.

Thus by Freedman’s theorem [12], the homeomorphism type of the re-
sulting closed 4-manifold does not change in the course of a knot surgery. As
mentioned earlier, the diffeomorphism type of the resulting manifold changes
if m > 1 and the Alexander polynomial of the knot K is nontrivial, and thus
provides an exotic copy of E(m). Note that it is possible to draw handle
diagrams for the knot surgered manifold. For details, see [1] or section 6.5
of [2].
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Kk

∂Σ

Σ

C+1 C−1

Figure 2.26: The local picture for Mk := S3\Kk near the clasp.

Now we start to prove Lemma 2.35 . First observe the following picture
of M0 := S3\K0 near the top clasp, as described in Figure 2.26.

Let Σ be the punctured torus depicted in the picture. Note that we can
get Mk := S3\Kk by simply doing a −( 1k )-Dehn surgery on ∂Σ. This means
we can get Mk from M0 by slitting M0 open along I × ∂Σ and regluing by
gk for some Dehn twist g. The Dehn twist g is captured by Figure 2.27,
in which the horizontal annulus is the collar neighbourhood for ∂Σ in Σ,
and the original meridian is mapped by g to the blue curve under the Dehn
surgery/twist. Passing everything to dimension 4 by taking the product
with S1, we similarly can get E(m)Kk

from E(m) = E(m)K0 by slitting
E(m) open along N := I × ∂Σ× S1 and regluing by gk × idS1 .

∂Σ

I

Figure 2.27: The schematic picture for the Dehn twist g.

Now if the boundary of a knot trace in E(m) contains the manifold N , we
can build a boundary homeomorphism by extending g× id1S as identity over
the rest of the boundary. A plug twist with this boundary homeomorphism
will solve the previous lemma. Thus we can update our goal to this following
lemma.
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Lemma 2.36. There exists a knot trace Xn(K) embedded in E(m) whose
boundary contains the 3-manifold N .

Proof. Note that throughout this proof, I = [−1, 1].
We start with the manifold Y := I × Σ × S1 ⊂ E(m), whose boundary

clearly contains N but is not simply connected. Its fundamental group has
three generators: the two generators C∗

±1 := {±1} × C±1 × {θ±1} coming
from M0, and a third generator γ−1 := {−1} × {∗} × S1 coming from the
S1 factor in the multiplication. Here θ±1 are two opposite points on S1,
and ∗ an interior point in Σ. Attach a (−1)-framed 2-handle along each of
the three generators gives a new 4-manifold Y ′ that is simply connected.
Moreover, since we are attaching handles on the ∂I × Σ × S1 part of the
boundary, N is still contained in the boundary of Y ′. Also note that in the
definition of knot surgery, the meridians of the knot Kk and the S1 factor
in the multiplication are identified to a near-cusp regular fibre of the elliptic
fibration, and thus have 6m parallel copies of vanishing cycles. Thus in
the above modification of Y , the three (−1)-framed 2-handles matches the
vanishing cycles of E(m), and thus Y ′ actually embeds in E(m)K0 = E(m).

Now the manifold Y ′ has two generators for the second homology, rep-
resented by the tori T±1 := {0} × C̃±1 × S1. Here C̃±1 are pushoffs of C±1

in Σ. We wish to kill the two generators and attach a new 2-handle to get
the correct homotopy type.

To do so, we cap off the annuli I × C±1 × {θ±1} with the core of 2-
handles attached along C∗

±1 before to form disks D±1, and drill out small
tubular neighbourhoods of the two disksD±1. Note that this new 4-manifold
is still simply connected, since T±1 surgered by the core of the 2-handle
attached along γ−1 can be seen as an immersed sphere, which acts as a
null-homotopy of the meridian of the disks D±1. The 4-manifold also has no
second homology by a quick Mayer-Vietoris sequence statement. In fact, this
contractible manifold is Gompf’s first example of an infinite order cork [18].

Lastly, to get the correct homotopy type, we add one more (−1)-framed
2-handle along the curve γ+1 := {+1} × {∗} × S1. For a similar reason in
the last paragraph, the resulting 4-manifold X still embeds in E(m) since
γ+1 matches another vanishing cycle, and contains N in its boundary.

Finally we show that this 4-manifold X is indeed diffeomorphic to a
knot trace. To do so, we will draw out the Kirby diagram of each step in
the construction.

We start with the 0-framed Borromean rings, which is the surgery di-
agram for the 3-torus T3. Changing one of its framing to ∗ (which means
cutting out the tubular neighbourhood of the knot and leave the cusp un-
filled) will change this 3-manifold to Q := Σ×S1. Our manifold in the first
guess Y is just I ×Q.

Next we notice that adding a 2-handle to I ×Q along some sphere S ⊂
{1} × Q and drilling out its core extended to {−1} × Q result in the 4-
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manifold I × P , where P is the surgery of Q along S. This is captured by
the following (more general) lemma.

Lemma 2.37. Given any q-dimensional compact smooth manifold Q and
any s-dimensional spheres S ⊂ Q, the following two smooth manifolds are
diffeomorphic:

• The manifold Q′, obtained by adding an (s+1)-handle to the manifold
I×Q along the sphere {1}×S with framing f ∈ πs(O(q−s)), followed
by cutting out the core of the handle, extended by I × S.

• The manifold I×P , where P is obtained from doing surgery to Q along
the sphere S with framing f .

Proof. For simplicity, we will not explicitly write out the gluing data on the
boundary, as each identification should respect the framing f . We will also
neglect corner issues.

We start from the first manifold. By definition, the manifold Q′ is ex-
pressed by

Q′ := I ×Q ∪ handle \ core \(I × S)

∼= I ×Q ∪Ds+1 ×Dq−s\(Ds+1 × {0})\(I × S)

∼= I × (Q\S) ∪Ds+1 × (Dq−s\{0})
∼= I × (Q\S) ∪Ds+1 × I × Sq−s−1

∼= I × ((Q\S) ∪Ds+1 × Sq−s−1)

However, the manifold (Q\S) ∪Ds+1 × Sq−s−1 is exactly the definition
of Q surgered along S, thus the manifold P .

We conclude with a low dimensional example, as captured by the follow-
ing picture. In this case, Q = S1, S = S0, and P = S1 ⊔ S1 if the 1-handle
is orientable or S1 if the 1-handle is non-orientable.

{1}×Q

Figure 2.28: A low dimensional (orientable) example for the lemma.
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Using this observation, we now know that our manifold X is I ×P with
two additional (−1)-framed 2-handles, where P is Σ×S1 surgered along the
two curves C±1 ×{θ±1}, as described by the surgery diagram in figure 2.29.

+1
*

0

−1

0

Figure 2.29: A surgery diagram of the 3-manifold P .

Notice that in the picture above, the two framings of the surgery circles
are ±1-framed instead of both (−1)-framed. This is because the circles C±1

lives on opposite faces of Y and thus inherit opposite orientations. Now if
we blow up the ±1-framed curves, we will get a surgery diagram depicted
by the Borromean rings with {∗,−1,+1} framings. Blowing up the two new
±1-framed curves again, we obtain the surgery diagram described by the
first picture in Figure 2.30. Applying Akbulut’s technique of drawing Kirby
diagrams of knot complements, we know that the second picture in Figure
2.30 gives a Kirby diagram for the manifold I × P .

*

Figure 2.30: Left: a modified surgery diagram for the 3-manifold P . Right:
a Kirby diagram for I × P , in ribbon complement notation.

Finally we recover the normal 1-handle notation from the ribbon com-
plement notation, and attach the last two 2-handles, attached along {±1}×
{∗} × S1. This gives a description of our 4-manifold X, by the first Kirby
diagram below. Sliding one of the (−1)-framed 2-handle over the 0-framed
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2-handle moves the 2-handle to the other 1-handle. An additional isotopy
gives the Kirby diagram on the right.

0

−1

−1

−1

−1

0

Figure 2.31: Left: a Kirby diagram for the homotopy 2-sphere X. Right:
the Kirby diagram for X, after a handle slide and isotopy.

Now we cancel the inner 1-2 handle pair. This gives the first diagram of
Figure 2.32. After an isotopy, we have the handle diagram on the right.

−1

−1

−1

−1 −1

−1

Figure 2.32: Kirby diagrams for X, after a handle cancellation and isotopy.

Finally we cancel the last 1-2 handle pair. This clearly gives a knot
trace of framing −2. To be explicit, the knot trace is given by the following
diagram.
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−2

−1

−1

Figure 2.33: Kirby diagram for X, after a handle cancellation and isotopy.

This finishes the proof of Theorem 2.34.
Note that a similar result in the topological category cannot hold. This

is ensured by the following (stronger) result of Boyer.

Theorem 2.38 (Theorem 0.10 of [5]). For a compact simply-connected 4-
manifold V with connected boundaryM , there is an integer n depending only
on H1(M) such that for any orientation preserving boundary automorphism
f , fn extends to a self-homeomorphism of V .

44





Chapter 3

Knot Traces and
Concordance Invariants

3.1 Khovanov Theory

In the late 1990s, Mikhail Khovanov introduced a knot and link invariant
called the Khovanov homology [24]. Building upon this work, Eun Soo
Lee refined the Khovanov homology to a spectral sequence whose E2 page
recovers the original Khovanov homology [27]. In 2004, Jacob Rasmussen
used the spectral sequence to define a knot concordance invariant s(K) [48].
Additionally, Rasmussen showed that the s-invariant is in fact a lower bound
for the slice genus.

In [43], Lisa Piccirillo applied techniques from dualisable patterns to
construct a pair of knots with diffeomorphic knot traces but distinct Ras-
mussen’s s-invariants. Furthermore, she showed that neither the s-invariant
nor the slice genus is a knot trace invariant. Later in [42], she applied this
fact to prove that the Conway knot is not slice. We survey her results in
subsection 3.2.2. In this section, we follow the routine of [48] to recall some
related constructions in Khovanov theory.

3.1.1 The Cube of Resolutions

Both Khovanov homology and Lee’s modified homology can be constructed
via some (1 + 1)-dimensional TQFT to what is called a cube of resolutions.

To start with, we construct a cube of resolutions. If we are given a link
diagram L with k crossings, ordered from 1 to k, the associated cube of
resolutions is a k-dimensional cube equipped with the following data:

• For each vertex v = (v1, ..., vk) of the cube, we associate a 1-manifold
Dv, where Dv is represented by the link diagram where the ith crossing
is resolved in the way indicated by the number vi ∈ {0, 1}, as indicated

45



by Figure 3.1. Note that since all crossings are resolved in some way,
Dv is just an unlink.

D1D0

D

Figure 3.1: 0- and 1- resolutions of a crossing.

• For each edge e connecting vertices ve(0) and ve(1), the diagrams for
Dve(0) and Dve(1) differ only near a single crossing. Thus we can asso-
ciate the edge e with a (1 + 1)-dimensional cobordism Se : Dve(0) →
Dve(1) where Se is the saddle cobordism near the targeted crossing and
the trivial cobordism anywhere else.

Figure 3.2 gives an example of a cube of resolutions for the standard
knot diagram of the trefoil.

Now if we have a (1 + 1)-dimensional TQFT A, we can define a coho-
mology theory as follows:

• The underlying group of the complex is defined to be
⊕

v A(Dv).

• The differential is defined as follows: given an element x ∈ A(Dv), its
differential is the sum of the TQFT evaluated on edges with x acting as
the initial end. To be rigorous, denote c0(v) as the number of crossings
in v with a type 0 resolution, and ei the edge representing a resolution
change (from type 0 to type 1) on the ith crossing, then we can define

d =

c0(v)∑
i=1

(−1)siA(Sei)

, where si are chosen to ensure d ◦ d = 0. Note that different choices
of si all yield isomorphic chain complexes.

• The homological grading is defined by gr(v) := |v| − n−, where |v| is
the number of 1’s in its coordinates, and n− is the number of negative
crossings in the original link diagram.

Since the differential increases the homological grading by 1, we yield
cohomology theories if we have a reasonable choice for the TQFT A. In
sections 3.1.2 and 3.1.3, we will define Khovanov’s TQFT and Lee’s TQFT
to yield Khovanov homology Kh and Lee’s modified Khovanov homology
Kh′.
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1

2

3

(0, 0, 0) (1, 0, 0)

(0, 0, 1)

(0, 1, 0) (1, 1, 0)

(1, 0, 1)

(0, 1, 1)
(1, 1, 1)

Figure 3.2: The cube of resolutions for a trefoil.
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3.1.2 Khovanov Homology

To define Khovanov’s TQFT A, we start by describing the action of A on
vertices of the cube of resolutions. Let V be a vector space spanned by two
elements v+ and v−. We define A(Dv) := V ⊗n, where n is the number of
disjoint circles in the diagram associated to Dv.

Next we specify how A acts on morphisms. Recall that for each edge e in
a cube of resolutions, the two diagrams associated to the vertices connected
are exactly the same except near a crossing. This tells us that the cobordism
associated to the edge is the trivial cobordism for circles away from the
crossing, and is a pair of pants near the crossing. Thus, A(Se) is given by
one of the two following maps:

• m : V ⊗2 → V , which is associated to the cobordism of merging two
circles into one. The specific formula is given by m(v+ ⊗ v+) = v+,
m(v+ ⊗ v−) = m(v− ⊗ v+) = v−, and m(v− ⊗ v−) = 0.

• ∆ : V → V ⊗2, which is associated to the cobordism of splitting a circle
into two. The specific formula is given by ∆(v+) = v+ ⊗ v− + v− ⊗ v+
and ∆(v−) = v− ⊗ v−.

With the TQFT A defined above, we have the Khovanov cochain com-
plex CKh(L). Again note that the differential d increases the homological
grading gr by 1.

Finally we define another grading q for Khovanov homology, also known
as the quantum grading (or q-grading for short). To start with, we first
define a grading p for the TQFT by setting p(v±) = ±1, and extend it to
all of V ⊗n by p(v1 ⊗ ... ⊗ vn) = p(v1) + ... + p(vn). Note that we have
p(Se(v)) = p(v) − 1 if v ∈ V ⊗n is a homogeneous element. Then we can
define the quantum grading q on the Khovanov cochain complex CKh by
q(v) := p(v) + gr(v) + n+ − n−, where n± denotes the number of positive
and negative crossings in the initial diagram L. With this definition, we can
see that q(d(v)) = q(v), i.e. the differential preserves the quantum grading.

Remark. Note that the existence of n± in the definition of the quantum
grading is to ensure that the grading is invariant under different choices of
the link diagram L.

Remark. Note that the graded (with respect to q) Euler characteristic is
the normalised Jones polynomial of L.

Thus we know that the Khovanov complex splits into direct sum of
complexes for each quantum grading. The cohomology of CKh(L) (thought
as a bigraded group) is the Khovanov homology Kh(L).
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3.1.3 Lee’s Modified Khovanov Homology

Next we construct Lee’s modified Khovanov homology A′. To do so, we only
need to modify the TQFT a little bit.

• The underlying group of the cochain complex is exactly the same as the
case of the original Khovanov homology, i.e. A′(Dv) = A(Dv) = V ⊗n.

• The action of A′ on morphisms is given by the following two modified
maps m′ : V ⊗ V → V and ∆′ : V → V ⊗ V , where

m′(v+ ⊗ v+) = m′(v− ⊗ v−) = v+ ∆′(v+) = v+ ⊗ v− + v− ⊗ v+
m′(v+ ⊗ v−) = m′(v− ⊗ v+) = v− ∆′(v−) = v+ ⊗ v+ + v− ⊗ v−.

The constructed cochain complex is Lee’s modified Khovanov complex
CKh′(L), and the associated cohomology theory is Lee’s modified Khovanov
homology Kh′(L).

Remark. Since Lee’s modified Khovanov complex has the exact same un-
derlying group as the original Khovanov complex, we can define the quantum
grading q accordingly. Although q does not behave quite so well as in the
original Khovanov homology, it defines a filtration on CKh′(L), and leads
to the following theorem proved in [27].

Theorem 3.1. There is a spectral sequence converging to Kh′(L) whose E2

page recovers the Khovanov homology Kh(L). Moreover, every En page is
a link invariant ∀n ≥ 2.

We finish this subsection by very briefly introducing the behaviour of
Kh′ under cobordism of knots and links, since this plays an important role
in the understanding of Rasmussen’s s-invariant. Of course there is also a
similar definition for the original Khovanov homology, but it is out of the
scope of this survey.

Given a cobordism S between two links L and L′, we wish to construct
an induced map ϕS : Kh′(L) → Kh′(L′). Moreover, we wish this map to
be functorial. This makes it possible for us to consider only the case of
elementary cobordisms: three Reidemeister moves, and three Morse moves,
as illustrated by Figure 3.3.

For an ith Reidemeister move, we define the induced map to be ρ′i∗ (or
its inverse), which is defined in [27] when proving the modified Khovanov
homology is independent of the choice of link diagrams. See [27] or [48] for
more details.

For a Morse 0- or 2-move, we define the induced map by applying maps
ϵ : V → Q, and ι : Q → V to the vertices of the cube of resolutions. Here ϵ
and ι are given by

ϵ(v−) = 1 ϵ(v+) = 0 ι(1) = v+.
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0-handles

1-handles

2-handles

Reidemeister I

Reidemeister II

Reidemeister III

Morse moves Reidemeister moves

Figure 3.3: Reidemeister moves and Morse moves.

For a Morse 1-move (or its inverse), we define the induced map by ap-
plying m′ and ∆′ to the vertices of the cube of resolutions.

This completes the construction of the induced maps for cobordisms.

3.1.4 Rasmussen’s s-Invariant

With the above constructions, we are now able to define Rasmussen’s s-
invariant. To start with, we recall some properties of Khovanov homology
Kh and Lee’s modified Khovanov homology Kh′.

Theorem 3.2 (Theorem 5.1 of [27]). There is a bijective correspondence
between the generators of modified Khovanov homology and the possible ori-
entations for L. In particular, Kh′(L) has rank 2n, where n is the number
of components of L.

We now restrict our attention to a knot K. With the above theorem, we
know that there are only two generators for Kh′(K).

Definition 3.3. Given a knot K, denote s as the grading on Kh′(K) in-
duced from the q-grading on CKh′(K), then we define

smax(K) = max{s(x)|x ∈ Kh′(K), x ̸= 0}
smin(K) = min{s(x)|x ∈ Kh′(K), x ̸= 0}.

It turns out that the gradings of the two generators for Kh′(K) are
always different and are adjacent odd integers. To be precise, we have
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Proposition 3.4 (Proposition 3.3 of [48]). smax(K)− smin(K) = 2.

With the above proposition, we can finally define Rasmussen’s s-invariant.

Definition 3.5. We define Rasmussen’s s-invariant by

s(K) := smin(K) + 1 = smax(K)− 1.

We finish this section by quickly going through some properties for Ras-
mussen’s s-invariant. All of the proofs and be found in [48].

Theorem 3.6. Rasmussen’s s-invariant descends to a homomorphism from
the smooth concordance group C = Conc(S3) to Z.

Theorem 3.7. Rasmussen’s s-invariant gives a lower bound to the slice
genus of a knot. To be precise, we have |s(K)| ≤ 2g4(K). If the knot K is
positive as a special case, we have 0 ≤ s(K) = g4(K) = g(K).

Theorem 3.8. If the knot K is alternating, then Rasmussen’s s-invariant
recovers the knot signature σ(K).

Theorem 3.9. Suppose K+ and K− are knots that differ by a single crossing
change, from a positive crossing in K+ to a negative one in K−. Then
s(K−) ≤ s(K+) ≤ s(K−) + 2.

3.2 Rasmussen’s s-Invariant and the Slice Genus

In this section we survey two examples constructed by Piccirillo [42] [43].
The first example proves that Rasmussen’s s-invariant and the slice genus
are in fact not trace invariants. The second proves the s-invariant is not a
trace invariant, and at the same time proves that the Conway knot is not
(smoothly) slice.

3.2.1 Example 1: the Slice Genus

Observe the family of RBG links Lm described in Figure 3.4, along with its
associated blue and green knots Km and K ′

m, as described in Figure 3.5.
Here every component is 0-framed.
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m
m

-3

Figure 3.5: Knots related to the RBG link

m

Figure 3.4: The RBG link generating the counterexample

Note that the RBG link Lm is a duaisable link, i.e. it is associated to
a dualisable pattern (c.f. subsection 2.1.3). Thus there is a diffeomorphism
between the zero traces X0(Km) and X0(K

′
m).

Also note that if we surger along the two bands decorated in the associ-
ated blue knot in Figure 3.5, it is straightforward to see that the knot Km is
a band sum of the right handed trefoil with an unlinked unknot. Thus Km

is just concordant to the knot B, i.e. a right handed trefoil knot, and thus
has slice genus g4(Km) = 1 and s(Km) = 2. Note that this concordance is
exactly because in the RBG link, B and G are split, and G is the unknot.

On the other hand, we can calculate by KnotJob [49] that Rasmussen’s
s-invariant for K ′

0 is s(K ′
0) = 4. By applying Theorem 3.9, we can see that

for everym ≤ 0, we have 2g4(K
′
m) ≥ s(K ′

m) ≥ 4. This shows the existence of
infinitely pair of knots with diffeomorphic 0-traces but distinct s-invariants
and slice genera.
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-2

Figure 3.6: Left: The Conway knot. Right: the knot K ′ whose 0-trace is
diffeomorphic to that of the Conway knot.

3.2.2 Example 2: the Conway Knot

Another example is Piccirillo’s famous proof of Conway knot is not slice [42].
Take the knot K to be the Conway knot (as described by the left picture

of Figure 3.6), where all classical slice obstructions, Heegaard Floer related
invariants (like τ , ν, ϵ, ...) as well as the Rasmussen s-invariant all vanish.
This makes traditional ways to obstruct the Conway knot being slice ex-
tremely hard. However, Piccirillo found that we can exploit the s-invariant
not being a trace invariant to prove that its zero-trace cannot be embedded
in D4, thus not slice via the trace embedding lemma.

To follow the idea above, we need to find an RBG link with property U
such that one of its associated knots is the Conway knot K. To do so, we
need the following existence lemma.

Lemma 3.10 (Proposition 3.2 of [42]). If a knot K has unknotting number
1, then there is an RBG link L such that

• B ∪R ∼= B ∪ µB, R ∪R ∼= G ∪ µG.

• The linking number between B and G is zero lk(B,G) = 0.

• The knot K is one of the associated knots to L.

Again recall that in previous sections, this restriction is denoted as a
dualisable link with K as one of its associated knots.

Proof. Without loss of generality, we assume that the unknotting crossing is
positive. Then we will first construct an RBG link with one of the associated
knots K, and then do some slides to obtain the desired properties.

To define the RBG link, we define (B, b) to be (K, 0). We then define R,
also 0-framed, to be a parallel of B away from the unknotting crossing and
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as depicted by the leftmost picture of Figure 3.7 near the crossing. Note
that R is the unknot by the unknotting assumption. We finally define (G, g)
to be the 0-framed meridian of R. It is straightforward to check this indeed
defines an RBG link. Additionally, directly cancelling R and G yields the
original knot K.

Then we slide B over R twice as indicated by Figure 3.7. In the right-
most RBG link, observe that both B and G are 0-framed meridians of R.
Moreover, we have lk(B,G) = 0. This finishes the proof of the lemma.

−w(D) + 2

0

0

0

-2

−w(D) + 2

0

0

Figure 3.7: Sliding B over R twice yields an RBG link with desired proper-
ties.

With the above lemma, we can follow the construction to obtain the
knot K ′ described by the right picture of Figure 3.6.

Now with an easy calculation via KnotJob, we can see that the Ras-
mussen’s s-invariant vanishes for the Conway knot, while the s-invariant for
K ′ is 2. Thus this pair of knots constructs a second counterexample for the
s-invariant being a trace invariant, and at the same time, proves that the
Conway knot is not slice.

3.3 Heegaard-Floer Theory

In the early 2000s, Peter Ozsváth and Zoltan Szábo introduced a new 3-
manifold invariant called the Heegaard Floer Homology [37], defined to be
the Lagrangian Floer Homology of the totally real tori related to a Heegaard
splitting. On the knot theory side of the same matter, Ozstháth-Szábo [38]
and Rasmussen [47] independently developed knot Floer Homology. In the
following years, various concordance invariants were defined based on Hee-
gaard Floer Theory, the most well known ones being the τ -invariant [36] [47],
the ν-invariant [40], and the ϵ-invariant [22].

In this part of survey, we focus on the questions on whether the above
mentioned concordance invariants are in fact a trace invariant. As a matter
of fact, Hayden, Mark, and Piccirillo showed that the ν-invariant is most
likely to be a trace invariant, while the τ and ϵ are not [21]. We will start
by reviewing some basic definitions and constructions in the Heegaard-Floer
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theory in this section. In section 3.4, we will recall the constructions of the
concordance invariants and survey the results of [21].

3.3.1 Preliminaries

Before we define Heegaard Floer homologies, there are a few preliminaries
we need to recall. In this subsection, we will very briefly recall Heegaard
splittings and diagrams, symmetric products and totally real tori associated
to the Heegaard diagram, holomorphic disks in the tori, and spinc structures.

Heegaard splittings and Heegaard diagrams A Heegaard splitting
(or Heegaard decomposition) is a decomposition of a closed oriented 3-
manifold Y into two genus g handlebodies (i.e. a tubular neighbourhood
of a wedge of g circles in 3-space, or in common words, a “solid genus g
surface”) U0 and U1, such that we recover the manifold Y by gluing the two
handlebodies via some diffeomorphism of the boundaries, i.e. Y ∼= U0∪ΣgU1.
In [50], Singer proved the existence result for Heegaard splittings.

Theorem 3.11. Let Y be a closed, oriented 3-manifold. The Y admits a
Heegaard decomposition.

Thus we know that the diffeomorphism type of a closed oriented 3-
manifold is actually determined by a natural number g, and a self diffeo-
morhism of a genus g surface Σg. On the other hand, to specify such an
automorphism, we only need to specify two sets of attaching circles, defined
as follows.

Definition 3.12. Given a genus g handlebody U with boundary Σg, a set
of attaching circles γγγ = (γ1, ..., γg) is a collection of embedded circles in Σg

such that:

• The curves γi are all disjoint from each other.

• The complement Σg − γ1 − ...− γg is still connected.

• The curves γi bound disjoint embedded disks in the handlebody U .

With two sets of attaching circles ααα and βββ given, we can specify a unique
automorphism of Σg by gluing each αi to βi. In this sense, we have a
closed three manifold. Thus, we have the following definition of a Heegaard
diagram.

Definition 3.13. A Heegaard diagram (Σg,ααα,βββ) consists of a genus g han-
dlebody with boundary Σg and 2 sets of attaching circles on Σg.

Finally we specify the notion of basepoints. An n-pointed Heegaard
diagram (Σg,ααα,βββ, z1, ..., zn) consists of a Heegaard diagram (Σg,ααα,βββ) and a
set of n points in Σg − α1 − ...− αg − β1 − ...− βg.
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Symmetric products and disks in them Recall that our final goal is
to apply Lagrangian Floer homology to define a 3-manifold invariant. Thus
we need to specify an ambient space and two Lagrangian submanifolds.

Given a Heegaard diagram (Σg,ααα,βββ), we define the associated ambient
space to be the symmetric product Symg(Σg) = Σg × ...×Σg/Sg, which is a
2g dimensional manifold. In Symg(Σg), there are two naturally embedded
g dimensional submanifold Tα = α1 × ...× αg and Tβ = β1 × ...× βg called
the totally real tori. It turns out that Symg(Σg) is symplectic and Tα and
Tβ are Lagrangian submanifolds.

To actually perform Lagrangian Floer homology, we need to set up some
further notations:

• For a pair of intersection points x, y ∈ Tα ∩ Tβ, define π2(x, y) to
be the set of homotopy classes of Whitney disks connecting x and y,
i.e. maps u : D → Symg(Σg) such that u(−i) = x, u(i) = y, u(e1) ⊂
Tα, u(e2) ⊂ Tβ, where ei are the two arcs of the unit disk with positive
(or negative resp.) real parts. Note that disk concatenation gives rise
to a multiplication operation ∗ : π2(x, y)× π2(y, z) → π(x, z).

• For a pair of intersection points x, y ∈ Tα ∩ Tβ and a point w in the
complement of the curves ααα,βββ, we define the algebraic intersection
number nw : π2(x, y) → Z by nw(ϕ) = #ϕ−1({w} × Symg−1(Σg)).

• Given ϕ ∈ π2(x, y), defineM(ϕ) to be the moduli space of the holomor-
phic representatives of ϕ. It turns out that after some perturbations,
the moduli space is a smooth manifold, and its expected dimension is
called the Maslov index. Furthermore, observe that the moduli space
always has an R action (corresponding to complex automorphisms of
the unit disk fixing ±i). Thus we can define the unparameterised

moduli space M̂(ϕ) := M(ϕ)/R.

Spinc structures We need one last piece of puzzle to define Heegaard
Floer homology: the spinc structures. In the settings of closed oriented
three manifolds, we define Spinc(Y ), the set of spinc structures on a closed
3-manifold Y as follows.

Definition 3.14. For two nowhere vanishing vector fields v1 and v2, we
define them to be homologous if they are homotopic outside some ball B,
i.e. v1|Y−B = v2|Y−B. Finally define Spinc(Y ) to be the space of nowhere
vanishing vector fields modulo this equivalence relation.

With the definition above, we can define a map sz : Tα ∩ Tβ → Spinc,
described as follows.

Let f be a Morse function related to the fixed Heegaard splitting. Given
x ∈ Tα ∩Tβ, it gives g trajectories for ∇f connecting index 1 and 2 critical
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points for f (one for each pair αi, βi). Similarly, z defines a trajectory con-
necting index 0 and 3 critical points. Deleting the tubular neighbourhoods
of these (g + 1) trajectories, ∇f defines a nowhere vanishing vector field.
This vector field can be extended to a nowhere vanishing vector field on
the whole 3-manifold. (Indeed, since vector field has index 0 on the bound-
ary spheres since the deleted trajectories connect critical points of different
parities.) By definition, this nowhere vanishing vector field defines a spinc

structure, which we define to be sz(x).
With all the pieces above, we can simply define the Heegaard Floer ho-

mology to be the Lagrangian Floer homology of the pair (Tα,Tβ). However,
we will give explicit constructions in subsection 3.3.2.

3.3.2 The 3-manifold Case

In this section we follow the routine of [37] and survey constructions of three
basic Heegaard Floer homologies for closed 3-manifolds. In most part of this
section, we fix our attentions to the case of homology 3-spheres for simplicity,
while the general case is very similar but with more technical details, solved
also in [37].

The hatted Heegaard Floer Homology ĤF We start with the hatted
Heegaard Floer homology. Fix a homology 3-sphere Y and a spinc structure
t ∈ Spinc. Given a pointed Heegaard diagram (Σ, α1, ..., αg, β1, ..., βg, z) of
genus g > 0, we can define:

• the hatted Heegaard Floer complex ĈF (ααα,βββ, t) to be the free abelian
group generated by points x ∈ Tα ∩ Tβ such that sz(x) = t.

• relative grading gr(x, y) = µ(ϕ) − 2nz(ϕ). Here ϕ is any element in
π2(x, y) and µ is the Maslov index.

• the boundary map ∂ : ĈF (ααα,βββ, t) → ĈF (ααα,βββ, t) given by

∂x =
∑

{y∈Tα∩Tβ ,ϕ∈π2(x,y)|sz(y)=t,nz(ϕ)=0}

c(ϕ) · y.

Here c(ϕ) denotes the signed number of points in M̂(ϕ) if µ(ϕ) = 1
and zero otherwise.

With the definitions above, it is easy to check that (ĈF , ∂) indeed defines
a chain complex, and thus can yield a homology theory.

Proposition 3.15. (ĈF (ααα,βββ, t), ∂) is a chain complex.

Definition 3.16. Define ĤF (ααα,βββ, t) to be the homology groups of the com-

plex (ĈF (ααα,βββ, t), ∂).
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Finally, we need to show that this homology theory is indeed a 3-manifold
invariant and is independent of the pointed Heegaard diagram chosen. The
proof can be found in [37].

Theorem 3.17. Let (Σ,ααα,βββ, z) and (Σ′,α′α′α′,β′β′β′, z′) be two pointed Heegaard

diagrams for (Y, t). Then the Heegaard Floer Homology groups ĤF (ααα,βββ, t)

and ĤF (α′α′α′,β′β′β′, t) are isomorphic.

Thus we can define ĤF (Y, t) as ĤF (ααα,βββ, t).

The full Heegaard Floer Homology HF∞ In the previous construc-
tion, we restrict our attentions to disks that do not cross the basepoint.
In this section, we loosen the restriction and consider all disks (possibly
crossing the basepoint). Similarly, we can define

• CF∞(ααα,βββ, t) to be the free abelian group generated by pairs (x, i) ∈
(Tα ∩ Tβ)× Z such that sz(x) = t.

• relative grading gr((x, i), (y, j)) = gr(x, y) + 2i− 2j.

• the boundary map ∂ : CF∞(ααα,βββ, t) → CF∞(ααα,βββ, t) given by

∂(x, i) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y)

c(ϕ) · (y, i− nz(ϕ)).

With the above definitions, CF∞ is again a chain complex, and the cor-
respondingly defined HF∞ is again independent of the Heegaard splitting.

There is an alternate yet equivalent construction of CF∞ and HF∞,
defined as follows. We define

• CF∞(ααα,βββ, t) to be the free abelian group generated by x, i ∈ Tα ∩Tβ

such that sz(x) = t over the ring Z[U,U−1].

• relative grading as in the hatted version, while U decreases the grading
by 2.

• the boundary map ∂ : CF∞(ααα,βββ, t) → CF∞(ααα,βββ, t) given by

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y)

c(ϕ) · Unz(ϕ) · y.

The resulting complex and homology are obviously equivalent to CFK∞

and HFK∞.

Remark. The alternative construction can be generalised to the case with
k base points, by changing the generating ring to Z[U1, U

−1
1 , ..., Uk, U

−1
k ] and

add intersection number restrictions to the summation as before.
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The signed Heegaard Floer Homology HF± Define CF−(ααα,βββ, t) ⊂
CF∞(ααα,βββ, t) to be the subgroup freely generated by pairs (x, i) such that
i < 0. Similar to the infinity version, there is an alternate construction: the
construction is exactly as the alternative construction of the infinity version
described in the previous section, except that the generating ring is changed
from Z[U,U−1] to Z[U ].

Define CF+(ααα,βββ, t) to be the quotient group CF∞(ααα,βββ, t)/CF−(ααα,βββ, t).
Note that as before, the above definition can also be easily generated to

the multi-basepoint scenario.
Also note that the subgroup CF−(ααα,βββ, t) is in fact a subcomplex of

CF∞(ααα,βββ, t). Thus we have the following short exact sequence of chain
complexes:

0 → CF−(ααα,βββ, t)
ι−→ CF∞(ααα,βββ, t)

π−→ CF+(ααα,βββ, t) → 0.

Now we can define the signed Heegaard Floer Homology. As before, we
again know that this version of the Heegaard Floer Homology is independent
of the pointed Heegaard splitting chosen.

Definition 3.18. Define HF±(ααα,βββ, t) to be the homology groups of the
complex (CF±(ααα,βββ, t), ∂).

Theorem 3.19. Let (Σ,ααα,βββ, z) and (Σ′,α′α′α′,β′β′β′, z′) be two pointed Heegaard
diagrams for (Y, t). Then the Heegaard Floer Homology groups HF±(ααα,βββ, t)
and HF±(α′α′α′,β′β′β′, t) are isomorphic.

Thus we can define HF±(Y, t) as HF±(ααα,βββ, t).

3.3.3 Knot Floer Homology

On the side of knot theory, we have a (series of) homology theories very
closely related to the 3-manifold version of Heegaard Floer theories. In this
section, we follow the routines of [30] to recall the constructions of several
basic knot Floer homology theories.

To start with, first observe that if given a two-pointed Heegaard diagram
(Σ,ααα,βββ, z, w) for S3, we can associate a knot in the following way. We
connect z and w by a curve a in Σ− α1 − ...− αg, and similarly connect z
and w by a curve b in Σ − β1 − ... − βg. By pushing a (resp. b) in to the
handlebody U0 (U1, resp.), we get a knot K ⊂ S3.

We wish to reverse the above procedure and associate a Heegaard split-
ting for each knot K ⊂ S3. The following theorem says that we can.

Theorem 3.20. Every knot can be represented by a two-pointed Heegaard
diagram.

Proof. We first find a height function h for the knot K with only two critical
points A and B, adjusted such that h(A) = 0 and h(B) = 3. Next we extend
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the height function to a self-indexing Morse function h̃ on S3, adjusted such
that the index 1 and 2 critical points are away from the knot K. Then
S3 = h̃−1((0, 3/2])∪h̃−1([3/2, 3)]) defines a Heegaard splitting. Note that the
surface h̃−1(3/2) intersects the knot K transversally at two points, which we
takes as the two basepoints z, w needed in the desired two-pointed Heegaard
diagram.

With this theorem, we can construct a two pointed version of Heegaard
Floer Homology.

The hatted Knot Floer Homology ĤFK The hatted version of knot
Floer homology is exactly the two-pointed version of the hatted version of
Heegaard Floer homology. Namely, we restrict our attention to disks that
do not cross any basepoint. We find an associated two-pointed Heegaard
splitting (Σ,ααα,βββ,w, z) by the above procedure and define

• ĈFK(ααα,βββ, t) to be the free abelian group generated by points x ∈
Tα ∩ Tβ.

• relative grading called Maslov grading M(x) − M(y) = µ(ϕ) −
2nw(ϕ). Here ϕ is any element in π2(x, y) and µ is the Maslov in-
dex.

• relative grading called Alexander grading A(x) − A(y) = nz(ϕ) −
nw(ϕ).

• the boundary map ∂ : ĈFK(ααα,βββ, t) → ĈFK(ααα,βββ, t) given by

∂x =
∑

{y∈Tα∩Tβ ,ϕ∈π2(x,y)|nw(ϕ)=nz(ϕ)=0}

c(ϕ) · y.

Here c(ϕ) denotes the signed number of points in M̂(ϕ) if µ(ϕ) = 1
and zero otherwise.

Note that the above defined boundary map decreases the Maslov index
by 1 and preserves the Alexander grading.

Again we have the following properties and definitions.

Proposition 3.21. (ĈFK(ααα,βββ, t), ∂) is a chain complex.

Definition 3.22. Define ĤFK(ααα,βββ, t) to be the homology groups of the

complex (ĈFK(ααα,βββ, t), ∂).

Proposition 3.23. The homology HFK is independent of the choice of
associated two-pointed Heegaard diagrams.
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Thus we can define ĤFK(K) as ĤFK(ααα,βββ, t).

Remark. Some sources like [30] use the notation g̃CFK and g̃HFK for
this version of knot Floer homology.

The signed Heegaard Floer Homology HFK− Next we consider the
case that we allow disks to cross one of the two base points. In this section,
we assume that the crossing of w is allowed. In practice, the resulting
homology would be the same if we change the choice of the distinguished
basepoint.

Just as the standard signed version of Heegaard Floer homology, there
is a similar two-pointed version for knots.

Note that there is another version of the plus/minus version of knot
Floer complex which is introduced in the next part. To avoid confusion, the
“minus” version of knot Floer complex in this part is denoted as gCFK−,
and in the next section CFK±.

Similar to the first construction, we first pick a two-pointed Heegaard
diagram (Σ,ααα,βββ,w, z) associated to the knot K. We then follow the alter-
native construction from the standard CF− construction and define:

• gCFK−(ααα,βββ, t) to be the free abelian group generated by x, i ∈ Tα∩Tβ

over the ring Z[U ].

• Maslov and Alexander grading as in the hatted version, while U de-
creases the Maslov grading by 2 and Alexander grading by 1.

• the boundary map ∂ : gCFK−(ααα,βββ, t) → gCFK−(ααα,βββ, t) given by

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),nz(ϕ)=0

c(ϕ) · Unw(ϕ) · y.

Again, its homology is well defined, invariant of the choice of Heegaard
splitting, and is denoted by HFK−(K).

The filtered complex F(K, j) ⊂ C̃FK In this section, we are still in
the setting of allowing disks to cross one of the two basepoints. However,
our end goal here is to construct a filtered Floer complex instead of a Floer
homology.

Again we pick a doubly pointed Heegaard splitting assocoiated to the
knot K and we define

• C̃FK(ααα,βββ, t) to be the free abelian group generated by x, i ∈ Tα ∩Tβ

over the ring Z.

• Maslov and Alexander grading as in the hatted version.
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• the boundary map ∂ : C̃FK(ααα,βββ, t) → C̃FK(ααα,βββ, t) given by

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),nw(ϕ)=0

c(ϕ) · y.

• F(K, j) ⊂ C̃FK to be the subcomplex generated by the intersections
points x ∈ Tα ∩ Tβ such that A(x) ≤ j.

The restriction of Alexander grading on F(K, j) made F into a filtered
complex:

... ⊂ F(K, j − 1) ⊂ F(K, j) ⊂ F(K, j + 1) ⊂ ...

Remark. The associated graded complex ⊕jF(K, j)/F(K, j−1) is exactly

the hatted version ĈFK(K).

The full knot complex CFK∞ and CFK± Finally we consider the
most general case: we allow disks to cross both base points. And our goal is
to combine the previous two construction to build a most complete version.

Similar to the standard infinity version of Heegaard Floer Complex for
closed 3-manifolds, there is an “infinity” version of the knot Floer complex
CFK∞(K) , called the full knot complex. Naturally, there are correspond-
ing “plus/minus” version CFK± of the Floer complex.

Again, we first pick a two-pointed Heegaard diagram (Σ,ααα,βββ,w, z) as-
sociated to the knot K, and then follow the alternative construction and
define

• CFK∞(ααα,βββ, t) to be the free abelian group generated by x, i ∈ Tα∩Tβ

over the ring Z[U,U−1].

• Maslov and Alexander grading as in the hatted version, and again U
decreases the Maslov grading by 2 and Alexander grading by 1.

• the boundary map ∂ : CFK∞(ααα,βββ, t) → CFK∞(ααα,βββ, t) given by

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y)

c(ϕ) · Unw(ϕ) · y.

As in the 3-manifold case, the full knot Floer complex CFK∞ can be
seen as freely generated over Z by triples (x, i, j) ∈ (Tα ∩ Tβ)× Z× Z with
A(x) = j−i. In this sense, i describes the negative of the U power; the triple
(x, i, j) corresponds to the generator U−1x; and j describes the Alexander
grading.

Note that the full knot complex is a filtered complex. We can either view
CFK∞ as a Z-filtered complex over Z[U,U−1] indexed by the Alexander
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Ub

Uc

U2a

U2b

...

U−1a

U−1b

U−1c

U−1c

...

Figure 3.8: The full knot complex for the left handed trefoil knot.

grading, or we can use the above correspondence and view CFK∞ as a
(Z⊕ Z)-filtered complex over Z indexed over i and j.

If we take the second perspective, we can draw the full knot complex
pictorially:

• We draw each generator (x, i, j) (or equivalently U−ix) as a dot at the
coordinate (i, j).

• The differential operator ∂ is described by the arrows. Namely, if we
have ϕ ∈ π2(x, y), it will change the horizontal coordinate by −nw(ϕ)
and vertical coordinate by −nz(ϕ).

• Note that the Maslov index is NOT shown in the picture.

Example. Figure 3.8 describes a picture of the full knot complex for the
left handed trefoil knot.

As for define the signed subcomplex, we have

• The subcomplex of CFK∞ corresponding to the triplets (x, i, j) with
i ≤ 0 is called CFK−. Note that this complex can also be considered
as the free abelian group generated by x, i ∈ Tα∩Tβ over the ring Z[U ],
equipped with the same differential map as the full knot complex.

• The subcomplex of CFK∞ corresponding to the triplets (x, i, j) with
i ≥ 0 is called CFK+.

3.4 The τ, ν and ϵ Invariants

In this final section, we will first describe Heegaard Floer homology as (3+1)-
dimensional TQFTs, namely, how they act on cobordisms. Then in subsec-
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tion 3.4.2, we recall the constructions and properties of some Heegaard Floer
theory based concordance invariants: the τ, ν and ϵ invariants. Next in sub-
section 3.4.3 we will follow the routine of [21] to survey a counterexample
showing that both τ and ϵ are not 0-trace invariants. Finally in subsection
3.4.4, we survey the result showing that the ν invariant is most likely a trace
invariant.

3.4.1 Heegaard Floer Homology and Cobordisms

In subsection 3.1.3 of this chapter, we explained how the Lee’s modified
Khoavnov theory behaves under cobordisms. In this subsection, we will do
the same for Heegaard Floer Theory. To start with, we survey the following
main result by Ozaváth-Szabó [37].

Theorem 3.24. Let W be a connected smooth oriented (3+1)-dimensional
cobordism between connected 3-manifolds Y0 and Y1. Fix a spinc struc-
ture s for the 4-manifold W . Then there exists an associated map F ◦

W,s :
HF ◦(Y0, s|Y0) → HF ◦(Y1, s|Y1). (Here ◦ means any Heegaard Floer theory
mentioned before, so one of {̂,+,−,∞}.) Additionally, this assignment is
functorial, i.e.

• If W is the trivial cobordism, then the induced map F ◦
W,s is the identity

map.

• Let W1 be a cobordism from Y0 to Y1, W2 a cobordism from Y1 to Y2.
Let W denoted the concatenated coborsism, then

F ◦
W2,s2 ◦ F

◦
W1,s1 =

∑
s∈Spinc(W ),s|Wi

=si

F ◦
W,s.

In other words, this theorem above states that any of the previously
surveyed Heegaard Floer theory defines a (3 + 1)-dimensional TQFT.

Next we sketch the construction of the cobordism map in the hatted
case. Constructions for other cases are similar. Since we have funtoriality,
we only need to know how the TQFT behaves under the attaching of 1, 2,
and 3-handles.

1. Attaching of a 1-handle changes the 3-manifold Y0 to Y0#(S1 × S2).

However, it is easy to see that ĤF (S1×S2) = H∗(S
1) = ⟨θ, λ⟩, where θ

denotes the higher graded element. Then we define the corresponding
induced function F̂W1 : ĤF (Y0) → ĤF (Y0#S

1×S2) = ĤF (Y0)⊗⟨θ, λ⟩
by x 7→ x⊗ θ.

2. Attaching a 3-handle is the opposite of attaching a 1-handle. Thus we
define the map F̂W3 : ĤF (Y0#S

1 × S2) → ĤF (Y0) by x⊗ θ 7→ x and
x⊗ λ 7→ 0.
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...

Figure 3.9: A triple Heegaard diagram for a genus g surface

3. Attaching a 2-handle corresponds to doing integral surgery on the 3-
manifold. To define the corresponding cobordism map, we need two
additional definitions: triple Heegaard-diagrams, and triangle maps.

Definition 3.25. A genus g triple Heegaard diagram associated to
3-manifolds Y0 and Y1 is a quadruple (Σ,ααα,βββ,γγγ) such that

(a) (Σ,ααα,βββ) is a genus g Heegaard Diagram for Y0.

(b) (Σ,ααα,γγγ) is a genus g Heegaard Diagram for Y1.

(c) Each γi and βi are isotopic (with two intersection points) for each
i < g, and γg intersects βg at one point.

Figure 3.9 gives a first example of a triple Heegaard diagram, where
the red, blue, green curves represent the collections ααα,βββ,γγγ respectively.

It is straightforward to check that if Y0 and Y1 are related by an
integral surgery, then there exists a triple diagram associated to the
pair (Y0, Y1). To construct a map between them, we need the following
definition.

Definition 3.26. Given a triple Heegaard diagram, we consider the
three related totally real tori Tα,Tβ,Tγ (or more generally, Lagrangian
submanifolds with analogous restrictions), we define the triangle map
to be the chain map F : CF (Tα,Tβ) ⊗ CF (Tβ,Tγ) → CF (Tα,Tγ)
sending

x⊗ y 7→
∑
z

∑
ϕ∈π2(x,y,z),µ(ϕ)=0

(#M(ϕ))z,

where the π2(x, y, z) are J-holomorphic triangles defined analogously
as before. Moreover, the triangle map descends to the homology level.

With these two definitions, we can now define the cobordism map. By
construction, we have ĤF (Y0) = HF (Tα,Tβ), ĤF (Y1) = HF (Tα,Tγ),
and HF (Tβ,Tγ) = ⟨θ1, λ1⟩⊗ ...⊗⟨θg−1, λg−1⟩⊗ ⟨θg⟩. Thus the cobor-

dism map F̂W2 : ĤF (Y0) → ĤF (Y1) is defined by x 7→ F (x ⊗ Θ),
where Θ = θ1 ⊗ ...⊗ θg.
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3.4.2 Definitions and Properties

Finally we have the tools to define the three concordance invariants: τ , ν
and ϵ.

The τ invariant Given a knot K, recall from subsection 3.3.3 that we
can construct its filtered complex F(K,m), which is a natural subcomplex

of the hatted complex ĈF (S3). Thus we have a sequence of induced maps

ιmK : H∗(F(K,m)) → H∗(ĈF (S
3)) = ĤF (S3) ∼= Z.

Note that when the filtration m is large enough, the map ιmK is always
an isomorphism. Thus it makes sense for us to give the following definition:

Definition 3.27.

τ(K) := min{m ∈ Z|ιmK is non-trivial}.

Next we quickly survey some of its properties. Note that the τ invariant
is, in a way, the Heegaard-Floer version of Rasmussen’s s-invariant, so some
properties might look very familiar. All of the proofs can be found in [36].

Lemma 3.28. The map τ induces a group homomorphism from Conc(S3)
to Z.

Lemma 3.29. The τ invariant gives a lower bound to the slice genus of a
knot. To be precise, we have |τ(K)| ≤ g4(K).

Lemma 3.30. If K is an alternating knot, then the τ(K) = −σ(K)/2.

Lemma 3.31. Suppose K+ and K− are knots that differ by a single crossing
change, from a positive crossing in K+ to a negative one in K−. Then
τ(K−) ≤ τ(K+) ≤ τ(K−) + 1.

There is a 4-dimensional interpretation of the τ invariant.

Lemma 3.32. Consider the cobordism map associated to a 2-handle ad-
dition F̂n,m : ĤF (S3) → ĤF (S3

−n(K), sm). Here sm ∈ Spinc is the spinc

structure satisfying ⟨c1(sm), σ⟩ − n = 2m, where σ is the second homology
class represented by the Seifert surface of K in S3, capped off by the core of
the added 2-handle. Then,

• For m < τ(K), the map F̂n,m is nontrivial for all sufficiently large n.

• For m > τ(K), the map F̂n,m is trivial for all sufficiently large n.
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The ν invariant For a knot K in S3, recall that we can construct a full
knot complex CFK∞(K) over F = Z/2. Within that, we define the “hook”
knot complexes {As, s ∈ Z} by the quotient {max{i, j − s} = 0}. Moreover,

for simplicity, we let Bs = {i = 0}, which is just the complex ĈF (S3). For
each s, there is a natural map vs : As → Bs, which is defined by quotient
followed by inclusions. Just like the τ invariant case, this map is in fact
identity for large enough s. Thus we have the following definition:

Definition 3.33.

ν(K) := min{s ∈ Z|vs is surjective in homology}.

Note that since ĤF (S3) ∼= F ∼= Z/2, the map (vs)∗ on homology is non-
trivial if and only if it is surjective. It is then easy to see that ν(K) is either
equal to τ(K) or τ(K)+1. Thus although it is a concordance invariant, the
ν invariant is not a homomorphism from Conc(S3) to Z.

Also note that the ϵ invariant is also closely related to the two invariants.
The precise characterisation is given in the next subsection.

Due to the immense similarity between the ν and the τ invariant, we
have a similar 4-dimensional characterisation.

Lemma 3.34. Consider the cobordism map F̂s : ĤF (S
3) → ĤF (S3

n(K), ss)
associated to a 2-handle addition. Again ss ∈ Spinc is the spinc structure
satisfying ⟨c1(ss), σ⟩+ n = 2s. Then

• If |⟨c1(ss), σ⟩|+ n < 2ν(K), then F̂s is non-zero.

• If |⟨c1(ss), σ⟩|+ n > 2ν(K), then F̂s is zero.

• If |⟨c1(ss), σ⟩|+n = 2ν(K), then F̂s is non-zero if and only if ϵ(K) = 0
and n ≤ 0.

Proof. We will only prove the first assertion here. The second and third
assertions will be proved in the next part, due to the involvement of the ϵ
invariant.

For the first case, it is proved in [39] that the induced map corresponding
to the spinc structure ss is exactly given by the inclusion of Bs into the
mapping cone of Dn : ⊕As → ⊕Bs, described as follows.

We first define the chain map hs : As → {j = s} ≃ Bs. Then Dn can be
defined by the formula (s, x) 7→ (s, vs(x))+(s+n, hs(x)). Diagrammatically
it looks like follows:

As−1 As As+1 ... As+n−1 As+n As+n+1

Bs−1 Bs Bs+1 ... Bs+n−1 Bs+n Bs+n+1
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With the result mentioned above, we then observe that the inequality
|⟨c1(ss), σ⟩|+ n < 2ν(K) is equivalent to −ν(K) + n < s < ν(K). But this
means that the homology of Bs is not in the image of vk or hk, thus survives
in the homology of the mapping cone. Thus the corresponding cobordism
map is non-trivial.

We will finish the proof of the last two assertions after the recall of the
ϵ invariant in the following part.

Now we consider the set of integers {s ∈ Z|F̂s ̸= 0}. This is a (probably
empty) interval of integers centered at n/2. If the set is non-empty, denote
its maximal element by smax. Then the previous lemma has the following
corollary.

Corollary 3.35. If F̂s = 0 for all s ∈ Z, then ν(K) ≤ n/2 if n even
and ν(K) ≤ (n + 1)/2 if n odd. Otherwise (i.e. smax is defined), we have
smax ≤ ν(K) ≤ smax+1, with ν(K) = smax if and only if ϵ(K) = ν(K) = 0
and n ≤ 0.

Proof. If the maps F̂s are trivial for all s ∈ Z, we know from the first
assertion of the lemma that |⟨c1(s), σ⟩|+ n ≥ 2ν(K) for all spinc structures
s. However, the Chern number |⟨c1(s), σ⟩| is of the same parity as n, thus
obtains minimum at 0 or 1 depending on the parity of n. The claim then
follows immediately.

On the other hand, if there exists non-trivial map F̂s, then smax is de-
fined. By conjugation invariance of the cobordism-induced maps, we know
that ⟨c1(smax), σ⟩ ≥ 0, and thus by the second assertion of the lemma, we
have smax ≤ ν(K). In the meantime, since F̂smax+1 = 0 by construction, we
have smax + 1 ≥ ν(K) by the first assertion of the lemma.

Finally we find conditions for equality. We know by definition that if
ν(K) = smax, then the map F̂ν(K) ̸= 0. Conversely, if F̂ν(K) ̸= 0, then
ν(K) ≤ smax. However, the bound we just established ensures ν(K) ≥ smax.
Thus ν(K) = smax if and only if F̂ν(K) ̸= 0, which we know is also equivalent
to ϵ(K) = ν(K) = 0 and n ≤ 0 thanks to the last assertion of the lemma
above.

The ϵ invariant In [22], J. Hom defined the ϵ invariant using the difference
in 4-dimensional characterisations between the τ and the ν invariant. To be
specific, we define:

Definition 3.36. • If ν(K) = τ(K) + 1 and ν(−K) = τ(−K), then
ϵ(K) = −1.

• If ν(K) = τ(K) and ν(−K) = τ(−K), then ϵ(K) = 0.

• If ν(K) = τ(K) and ν(−K) = τ(−K) + 1, then ϵ(K) = 1.
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This characterisation is in fact exhaustive.
Note that the ϵ invariant has the following immediate properties that we

survey without proofs. Details can be found in e.g. [22].

Lemma 3.37. 1. If K is slice, then ϵ(K) = 0.

2. If ϵ(K) = 0, then τ(K) = 0.

3. ϵ(−K) = −ϵ(K).

4. If K is quasi-alternating, then ϵ(K) = sign(τ(K)).

5. If g(K) = |τ(K)|, then ϵ(K) = sign(τ(K)).

6. If ϵ(K1) = ϵ(K2), then ϵ(K1#K2) = ϵ(K1). If ϵ(K1) = 0, then
ϵ(K1#K2) = ϵ(K2).

In particular, the ϵ invariant is a concordance invariant.
Finally, we finish the proof of Lemma 3.34.

Proof of the last two assertions of Lemma 3.34. Now we prove the second
case. Thanks to conjugation invariance, we can assume without loss of
generality that ⟨c1(ss), σ⟩+n ≥ 2ν(K) s ≥ ν(K). By definition, this means
that H∗(Bs) is in the image of vs in homology. Thus, if there is an element
ys ∈ As such that vs(ys) generates homology of H∗(Bs) and hs(ys) = 0, we
can conclude that H∗(Bs) is also in the image of the Dn in homology, and
thus the corresponding cobordism map trivial. Thus, the rest of the proof
is in search for such an element ys.

• If s > −ν(K), then the map hs is just the zero map. The condition
then is easily satisfied.

• If s ≤ ν(K), we take advantage of the following result by Mark-
Tosun [34].

Lemma 3.38. The maps vs, hs : As → Bs induce the same map in
homology if and only if s = ϵ(K) = 0.

It is not hard to see that s = ϵ(K) = 0 ensures that ν(K) = τ(K) = 0,
which does not fall in the restrictions of the second assertion. Thus
we can safely assume that the maps vs and hs do not induce the same
surjection H∗(As) → H∗(Bs). Under this assumption, either of the
two following cases will happen.

– Exists an element x ∈ As such that (hs)∗(x) = 0 but (vs)∗(x) ̸= 0.
Then x is the element we are looking for.
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– Exists an element x ∈ As such that (vs)∗(x) = 0 but (hs)∗(x) ̸= 0.
In this case, we can find another element x′ ∈ As such that both
(vs)∗(x

′) ̸= 0 and (hs)∗(x
′) ̸= 0. Then x + x′ is the element we

are looking for.

This concludes the proof of the second assertion.
We finally prove the last assertion. Following the discussion from the

previous assertion, we can see that if ϵ(K) ̸= 0, the the cobordism map is
still trivial. Thus we assume ϵ(K) = 0.

If n > 0, we pick a generator x0 forH∗(B0) = F. Since ν(K) = ϵ(K) = 0,
there exists an element y0 ∈ H∗(A0) such that (v0)∗(y0) = x0. By Mark-
Tosun’s result, we know that (h0)∗(y0) = xn is non-trivial. However, we
know by definition that vn : An → Bn is onto (since n > 0), and hn : An → B
is trivial (since ν(K) = 0). Thus for any yn ∈ H∗(An), we know that
(Dn)∗(y0 + yn) = xn. Thus the inclusion of B0 into the mapping cone is
trivial, and so is the corresponding trivial map.

If n ̸= 0, again we pick a generator x0 for H∗(B0) = F. Again by
definition, we know that x0 is in the image of v0, and (h0)∗(y0) = xn ∈
H∗(Bn) is non-trivial. However, x0 is not in the image of h−n, and xn is not
in the image of vn, as they are zero maps by −n > −ν(K) = 0. Thus, for any
element in the image of (Dn)∗, if the component in H∗(B0) is non-trivial,
so is the component in H∗(Bn), and in particular, H∗(Bn) ∩ im(Dn) = 0.
Thus for n < 0, we know that the inclusion and thus the cobordism map
is nontrivial. If n = 0, then the mapping cone splits, with one of the
subcomplexes the cone of v0 + h0 : A0 → B0. But this is the zero map
since F = Z/2Z by Mark-Tosun’s result. Thus the inclusion and thus the
cobordism map is non-trivial.

This concludes the proof of Lemma 3.34.

3.4.3 Counterexamples

The following figures give the RBG link and the associated knots K and
K ′. Again, every component is 0-framed. It is straightforward to check
that the RBG link comes from a dualisable construction, and thus have
diffeomorphic 0-traces.
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Figure 3.10: The RBG link generating the counterexample

Figure 3.11: The two knots associated to the RBG link

Via the HFK calculator in Snappy [7], once calculates that τ(K) = 1
and ϵ(K) = 1 while τ(K ′) = 0 and ϵ(K ′) = −1. This shows that the τ
invariant and the ϵ invariant are not trace invariants.

Note that in [8], it is proved that rkĤFK(K)(mod 8) is not a con-

cordance invariant. It is also conjectured that rkĤFK(K)(mod 4) is in-
deed a concordance invariant. This same counterexample above proves that
rkĤFK(K)(mod 8) is also not a trace invariant (since rkĤFK(K) = 35,

and rkĤFK(K ′) = 31). Whether or not rkĤFK(K)(mod 4) is a trace
invariant is still open.

3.4.4 The ν-invariant is a Trace Invariant

Finally, we will follow the proof from [21] to show that the ν invariant is
most likely a trace invariant. To be specific, we will survey the proof of the
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following theorem.

Theorem 3.39. If the oriented knot traces Xn(K) and Xn(K
′) are diffeo-

morphic, then ν(K) = ν(K ′), except possibly if n < 0 and {ν(K), ν(K ′)} =
{0, 1}.

Proof for Theorem 3.39. We first note that a knot trace X := Xn(K) de-
termines the integral framing n and the integer (or not-defined) smax. We
can also apply the theory to −X ∼= X−n(−K) and similarly obtain an inte-
ger (or not-defined) s′max. Thus we reduce the study of an oriented smooth
manifold to the study of the three values n, smax, and s

′
max.

Now we split the problem into three cases:

1. Case 1: smax is defined. We wish to apply Corollary 3.35 to determine
the value of ν(K).

• If n > 0 or smax ̸= 0, by Corollary 3.35, we know that ν(K) =
smax + 1.

• If n = 0 and smax = 0. We identify ν(K) by ϵ(K). Indeed, from
Corollary 3.35, we know ν(K) = 0 if ϵ(K) = 0, and ν(K) = 1 if
ϵ(K) ̸= 0. However, the two cases can be distinguished by s′max.

(a) If ϵ(K) = 0, then ϵ(−K) = ν(−K) = 0. Applying the last
assertion of Lemma 3.34, we know that s′max = 0 and in
particular, s′max is defined.

(b) If ϵ(K) ̸= 0, then ϵ(−K) ̸= 0 and ν(−K) = 0. Then the last
assertion of Lemma 3.34 ensures that s′max is not defined.

2. Case 2: s′max is defined. We split the problem into two sub-cases.

• If s′max ̸= 0, we first determine the value of |ϵ(−K)|. If ϵ(−K) =
0, then ν(−K) = 0, and thus by Corollary 3.35, s′max = 0, yield-
ing a contradiction. Thus ϵ(−K) ̸= 0. Thus it follows that
ν(−K) = s′max + 1, and ν(K) = −ν(−K) + 1 = −s′max.

• If s′max = 0, then by Corollary 3.35, either ν(−K) = s′max =
ϵ(−K) = 0 or ν(−K) = s′max + 1 = |ϵ(−K)| = 1 . However, in
either case, it follows immediately that ν(K) = 0. Note that in
this case, we fail to determine |ϵ(K)|.

3. Case 3: neither smax nor smax is defined.

We first claim that ϵ ̸= 0. By contradiction, if ϵ(K) vanishes, then
ν(−K) = ϵ(−K) = 0, and thus by the last assertion of Lemma 3.34,
the cobordism map induced by the spinc structure s′n on −Xn(K) is
non-trivial. This yields a contradiction.
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Next if n is an even integer, then by Corollary 3.35, we have the
inequalities n/2 + 1 ≤ −ν(−K) + 1 = ν(K) ≤ n/2, yielding a contra-
diction.

Thus n is odd. A similar bound gives (n− 1)/2 + 1 ≤ −ν(−K) + 1 =
ν(K) ≤ (n+ 1)/2. This tells us that ν(K) = (n+ 1)/2.

Finally we study the case of n < 0. We reverse the orientation to consider
−K. The above argument shows that we can determine ν(−K). However,
in all but one case, |ϵ(−K)| is determined, and thus so is ν(K). The problem
occurs at ν(−K) = 0, where we know ν(K) ∈ {0, 1}. This proves the last
bit of the theorem.

We conclude the proof of the theorem by the following table:

Correspondence between {smax, s
′
max, n} and ν(K) and |ϵ(K)|

smax s′max n ν(K) |ϵ(K)|
̸= 0 smax + 1 1
defined > 0 smax + 1 1
0 defined 0 0 0
0 undefined 0 1 1
undefined 0 > 0 0 ???
undefined undefined odd (n+ 1)/2 1

̸= 0 −s′max 1
defined < 0 −s′max 1

0 undefined < 0 ??? ???

Table 3.1: Correspondence between {smax, s
′
max, n} and ν(K) and |ϵ(K)|
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