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Introduction

This note is a survey of the papers I have read and techniques I have learned about
the constructions for exotic pairs.

I am only barely getting started on this survey. I will (try to) keep updating
this survey biweekly on my website yikaiteng.net. Please let me know if you have
any comments/find any typos.
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Chapter 3

Exotica from Elliptic Fibrations

3.1 Exotic Elliptic Surfaces

In this section we will apply the techniques introduced in Chapter 2 and construct
an infinite family of exotic elliptic surfaces E(n).

3.2 Elliptic Surfaces as Double Branched Covers

In this section we survey the results from Stipsicz and Szabo’s result in [SS23], and
study a family of exotic definite 4-manifolds.

To be specific,
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Chapter 4

Exotic Small mCP2#nCP2’s

4.1 Exotic CP2#3CP2 and exotic 3CP2#5CP2

In this section we follow [AP08] and construct exotic CP2#3CP2 and exotic 3CP2#5CP2.

4.1.1 Preliminaries

4.1.2 Constructions

We start with the trefoil knot K := 31. Denote its 0-surgery byMk := S3
0(K). Since

we know that the trefoil is a genus 1 fibered knot. Thus Mk can be seen as a T2

bundle over S1. We call one of its sections b.

By taking a product with S1, Mk × S1 is a T2 bundle over T2. We denote F by
one of its fiber, and S as the section b × S1. By a result of Thurston [Thu22], we
know that Mk × S1 yields a symplectic structure such that both F and S are its
symplectic submanifolds.

Now we take the symplectic sum of CS := (Mk × S1)\ν(S) and CF := (Mk ×
S1)\ν(F ), and we call the resulting closed 4-manifold YK := CS#ψCF . Here ψ is
a boundary diffeomorphism between CF and CS , whose action on the fundamental
groups will be specified in the next subsection.

In the manifold YK , we can locate a submanifold Σ2, obtained by taking the
connected sum of a section of CF and a fiber of CS . Moreover, this submanifold is
a genus 2 surface, and can be made a symplectic submanifold.

Now we take the symplectic sum of two copies of YK along the submanifold Σ2.
This gives the manifold XK := YK#Σ2YK . Again the boundary diffeomorphism is
specified in the next section. In fact, this is the cohomology S2 × S2 constructed
in [Akh08]. The two manifolds XK and YK are the building blocks of the construc-

tions of exotic CP2#3CP2 and 3CP2#5CP2.

We first construct an exotic 3CP2#5CP2, denoted X. We start with the 4-torus
T4 = T2 × T2 with the symplectic structure obtained by pulling back two copies of
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18 CHAPTER 4. EXOTIC SMALL mCP2#nCP2’S

the standard symplectic structure on T2, which in formula writes as ω := p∗1,2(ω1,2)+

p∗3,4(ω3,4). In this symplectic T4, we can locate a genus 2 surface Σ′
2 by taking the

connected sum of two copies of T2. Note that Σ′
2 has self-intersection number 2

in T4, and thus have self-intersection number 0 in the blown-up-twice manifold

T4#2CP2. The closed 4-manifold X is then defined as the symplectic sum of XK

and T4#2CP2, gluing Σ2 and Σ′
2 together. Again the boundary diffeomorphism is

specified in the next section. We claim that this X is an exotic 3CP2#5CP2.

Finally we construct an exotic CP2#3CP2, denoted U . Recall that in MK ×S1,
we can locate a genus 2 surface by taking the connected sum of a torus fiber F
and a torus section S. Again this submanifold has self-intersection number 2 in
MK × S1 and thus has self-intersection number 0 in the blown-up-twice manifold

MK × S1#2CP2. Now we define U by taking the symplectic sum of YK and MK ×
S1#2CP2, and claim that it is an exotic copy of CP2#3CP2.

4.1.3 Calculations of Fundamental Groups

In this subsection, we calculate the fundamental groups of each 3- and 4-manifold
constructed in the previous subsection. In the meantime, we use the fundamental
group data to specify several boundary diffeomorphisms when doing symplectic sums
above.

Recall that the fundamental group for MK is the knot group for the trefoil
π1(MK) ∼= ⟨a, b | aba = bab⟩.

Lemma 4.1.

4.1.4 Proving Exotica

4.1.5 Kirby Diagrams

For this subsection, we follow the routine of
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Chapter 5

Exotic R4’s
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5.3 Relations between the constructions
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Chapter 6

Misc

6.1 LLP23

In this section we follow [LLP23] and introduce a Heegaard theoretic approach to
detect closed exotic 4-manifolds.

6.1.1 Invariants for 4-manifolds with Positive b1

In this section, we define an invariant for smooth 4-manifolds with positive b1, based
on Heegaard Floer Theory.

Definition 1 (The α-invariant). Suppose X is a closed oriented connected smooth
4-manifold with b1 > 0, and η ∈ H3(X) a primitive element (that is, not a positive
integer multiple of another element in the lattice). Then we define the α invari-
ant α(X, η) to be the minimal F-dimension of HFred(Y ), where Y is a smoothly
embedded closed connected oriented 3-manifold representing the homology class η.

Note that α(X, η) = α(X,−η), as the dimension for the reduced Heegaard Floer
homology does not distinguish a 3-manifold from its orientation inverse. Thus if
b1(X) = 1, we simply write α(X) := α(X, η), as there is only one generator for
H3(X) up to a change of orientation.

Example. For a 4-manifold X of the form S1×S3#Z, where Z is a closed oriented
smooth 4-manifold with b1(Z) = 0, its α-invariant α(X) = 0, as the S3 component
represents the generator for H3(X).

In general, the α-invariant is hard to calculate. However, for a specific case
as described by the following proposition, we know exactly how to calculate the
α-invariant.

Proposition 6.1 (Proposition 4.3 of [LLP23]). Let Y be a closed connected oriented
3-manifold, andW a cobordism from Y to itself such that the induced map on reduced
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Heegaard Floer homology (summing over all spinc structures)

FW : HFred(Y ) → HFred(Y )

is an isomorphism. Gluing the two ends of W yields a closed 4-manifold X, in which
Y represents a third homology class which we call η. Then the submanifold Y actu-
ally minimizes the dimension of HFred for the class η, i.e. α(X, η) = dim HFred(Y ).
Moreover, if HFred(Y ) ̸= 0, then X does not contain any embedded 2-spheres with
self intersection ±1.

Proof.

Applying the above proposition to a settings where the homeomorphism type
is completely classified , e.g. π1(X) ∼= Z, we can modify the proposition for the
purpose of generating exotic pairs, as described by the following proposition.

Proposition 6.2. Suppose Y is a homology 3-sphere, W a cobordism between Y
and itself with odd intersection form, and X the closed 4-manifold obtained by gluing
the two ends of W via some diffeomorphism. Then X is homeomorphic to S1 ×
S3#mCP2#nCP2, where m = b+2 (W ) and n = b−2 (W ). Then, if HFred(Y ) ̸= 0
and W induces an isomorphism on HFred(Y ), then X is an exotic copy of S1 ×
S3#mCP2#nCP2.

6.1.2 Invariants for Simply-connected 4-manifolds

6.1.3 Building Blocks

6.1.4

6.1.5

6.1.6
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